【MATLAB】语音信号识别与处理:小波去噪滤波算法去噪及谱相减算法呈现频谱

1 基本定义

小波去噪滤波算法是一种基于小波变换的滤波方法,它通过对信号进行小波变换来分解信号的频率分量,并根据信号的特点选择合适的阈值处理方法来去除噪声。该算法的主要思想是将信号分解成多个频率分量,根据信号的特点选择合适的阈值处理方法对每个频率分量进行去噪处理,然后将去噪后的频率分量进行合成,得到平滑后的信号。 具体来说,小波去噪滤波算法的步骤如下:

  1. 对信号进行小波分解,得到多个频率分量。

  2. 对每个频率分量进行阈值处理,去除噪声。

  3. 将去噪后的频率分量进行合成,得到平滑后的信号。小波去噪滤波算法的优点是可以有效地去除噪声,同时保留信号的整体趋势;缺点是需要选择合适的小波基和阈值处理方法,否则可能会影响滤波的效果。另外,小波去噪滤波算法对于信号中存在的快速变化的特征可以得到很好的保留,因此在一些需要保留信号快速变化特征的应用场景中,小波去噪滤波算法得到了广泛的应用。

谱相减算法呈现频谱:谱相减算法是一种音频降噪方法,通过将原始频谱与估计的噪声频谱进行相减,得到清晰的音频信号。该算法通常在频域进行操作,对频谱进行减法运算,并对结果进行逆变换以获得时间域的清晰信号。

2 定义和出图效果

附出图效果如下:

附视频教程操作:

【MATLAB】语音信号识别与处理:小波去噪滤波算法去噪及谱相减算法呈现频谱

代码见附件和视频~

相关推荐
七夜zippoe2 分钟前
CANN Runtime调试支持模块 算子中间结果保存与校验源码解析
人工智能
lili-felicity4 分钟前
CANN多设备协同推理:从单机到集群的扩展之道
大数据·人工智能
三克的油4 分钟前
ros-day3
人工智能
聆风吟º9 分钟前
CANN ops-math 应用指南:从零搭建高效、可复用的自定义 AI 计算组件
人工智能·机器学习·cann
熊文豪13 分钟前
从零开始:基于CANN ops-transformer的自定义算子开发指南
人工智能·深度学习·transformer·cann
云边有个稻草人17 分钟前
基于CANN ops-nn的AIGC神经网络算子优化与落地实践
人工智能·神经网络·aigc
chian-ocean19 分钟前
视觉新范式:基于 `ops-transformer` 的 Vision Transformer 高效部署
人工智能·深度学习·transformer
程序猿追21 分钟前
探索 CANN Graph 引擎的计算图编译优化策略:深度技术解读
人工智能·目标跟踪
哈__21 分钟前
CANN加速语音识别ASR推理:声学模型与语言模型融合优化
人工智能·语言模型·语音识别
慢半拍iii32 分钟前
CANN算子开发实战:手把手教你基于ops-nn仓库编写Broadcast广播算子
人工智能·计算机网络·ai