图像处理与视觉感知---期末复习重点(2)

文章目录

  • 一、空间域图像增强
    • [1.1 图像增强](#1.1 图像增强)
    • [1.2 几种变换](#1.2 几种变换)
  • 二、直方图
    • [2.1 直方图定义](#2.1 直方图定义)
    • [2.2 直方图均衡化](#2.2 直方图均衡化)
    • [2.3 离散情况](#2.3 离散情况)
    • [2.4 例子](#2.4 例子)
    • [2.5 直方图匹配](#2.5 直方图匹配)
    • [2.6 例子](#2.6 例子)
    • [2.7 一道例题](#2.7 一道例题)
  • 三、空间滤波器
    • [3.1 定义](#3.1 定义)
    • [3.2 例子](#3.2 例子)
  • 四、平滑空间滤波器
    • [4.1 作用与分类](#4.1 作用与分类)
    • [4.2 线性滤波器](#4.2 线性滤波器)
  • 五、统计排序滤波器
    • [5.1 定义与分类](#5.1 定义与分类)
    • [5.2 计算公式](#5.2 计算公式)

一、空间域图像增强

1.1 图像增强

1. 图像增强:是一类基本的图像处理技术,其目的是对图像进行加工,以得到对视觉解释来说视觉效果"更好"、或对机器感知效果来说"更有用"的图像。

2. 图像增强分为两类:(1) 空间域增强:对图像的像素直接处理。(2) 频域增强:对图像经傅里叶变换后的频谱成分进行处理,然后逆傅里叶变换获得所需的图像。

3. 空间域增强: g ( x , y ) = T [ f ( x , y ) ] g(x,y)=T[f(x,y)] g(x,y)=T[f(x,y)]

f ( x , y ) f(x,y) f(x,y) 是原图像; g ( x , y ) g(x,y) g(x,y) 是处理后的图像; T T T 是作用于 f f f 的操作,定义在 ( x , y ) (x,y) (x,y) 的邻域。

4. 空间域增强的简化形式: s = T ( r ) s=T(r) s=T(r)

r r r 是 f ( x , y ) f(x,y) f(x,y) 在任意点 ( x , y ) (x,y) (x,y) 的灰度级; s s s 是 g ( x , y ) g(x,y) g(x,y) 在任意点 ( x , y ) (x,y) (x,y) 的灰度级。

1.2 几种变换

1. 反转变换和对数变换:

2. 幂变换:

3. 5灰度级切片

4. 6位平面切片

二、直方图

2.1 直方图定义

1. 定义(1):

一个灰度级在范围 [ 0 , L − 1 ] [0,L-1] [0,L−1] 的数字图像的直方图是一个离散函数。 h ( r k ) = n k h(r_k)=n_k h(rk)=nk;其中 n k n_k nk 是图像中灰度级为 r k r_k rk 的像素个数, r k r_k rk 是第 k k k 个灰度级, k = 0 , 1 , 2 , . . . , L − 1 k=0,1,2,...,L-1 k=0,1,2,...,L−1。

由于 r k r_k rk 的增量是1,直方图可表示为: p ( k ) = n k p(k)=n_k p(k)=nk,即图像中不同灰度级像素出现的次数。

2. 定义(2):

一个灰度级在范围 [ 0 , L − 1 ] [0,L-1] [0,L−1] 的数字图像的直方图是一个离散函数。 p ( r k ) = n k / n p(r_k)=n_k /n p(rk)=nk/n; n n n 是图像的像素总数, n k n_k nk 是图像中灰度级为 r k r_k rk 的像素个数, r k r_k rk 是第 k k k 个灰度级, k = 0 , 1 , 2 , . . . , L − 1 k=0,1,2,...,L-1 k=0,1,2,...,L−1。

3. 两种图像直方图定义的比较:

4. 一个例子:

2.2 直方图均衡化

1. 直方图均衡化思想:就是把一幅图像变换成具有均匀分布的概率密度函数的新图像过程。

2. 先讨论连续变化图像的均衡化问题。在一幅图像中,可以认为灰度级是一个在 [ 0 , L − 1 ] [0,L-1] [0,L−1] 区间取值的随机变量 R R R。设 r r r 和 s s s 分别表示归一化了的原图像灰度级和经直方图均衡后的图像灰度级,即: ≤ r , s ≤ 1 ; s = T ( r ) ; ≤r,s≤1;s=T(r); ≤r,s≤1;s=T(r); T ( r ) T(r) T(r) 作为变换函数。

在 [ 0 , 1 ] [0,1] [0,1] 区间内的任一个 r r r 值,都可产生一个 s s s 值,如下图所示:

3. T ( r ) T(r) T(r) 作为变换函数,满足下列条件:① 在 0 ≤ r ≤ 1 0≤r≤1 0≤r≤1 内为单调递增函数,保证灰度级从黑到白的次序不变。 ② 在 0 ≤ r ≤ 1 0≤r≤1 0≤r≤1 内有 0 ≤ T ( r ) ≤ 1 0≤T(r)≤1 0≤T(r)≤1,确保映射后的像素灰度级在允许的范围内。

反变换关系为: r = T − 1 ( s ) r=T^{-1}(s) r=T−1(s); T − 1 ( s ) T^{-1}(s) T−1(s) 对 s s s 同样满足上述两个条件。

4. 计算公式:

5. 直方图均衡不一定总是好的。缺点:(1) 变换后图像的灰度级减少,某些细节消失。(2) 某些图像,如直方图有高峰,经处理后对比度不自然的过分增强。

2.3 离散情况

1. 离散情况下直方图均衡化的算法步骤:

(1) 列出原始图像的灰度级 r j r_j rj, j = 0 , 1 , 2 , . . . , L − 1 j=0,1,2,...,L-1 j=0,1,2,...,L−1

(2) 统计各灰度级的像素数目 n j n_j nj, j = 0 , 1 , . . . , L − 1 j=0,1,...,L-1 j=0,1,...,L−1

(3) 计算原始图像直方图各灰度级的频率 P R ( r j ) = n j / n P_R(r_j)=n_j/n PR(rj)=nj/n, j = 0 , 1 , . . . , L − 1 j=0,1,...,L-1 j=0,1,...,L−1

(4) 计算累计分布函数: S k = ∑ p R ( r j ) S_k=∑p_R(r_j) Sk=∑pR(rj), j = 0 , 1 , . . . , k , . . . , L − 1 j=0,1,...,k,...,L-1 j=0,1,...,k,...,L−1

(5) 把新的灰度级按就近原则转化为原灰度级: g k = I N T [ ( L − 1 ) s k + 0.5 ] g_k=INT[(L-1)s_k+0.5] gk=INT[(L−1)sk+0.5],其中 I N T INT INT 为取整

(6) 用原图像 r k r_k rk 和 g k g_k gk 的映射关系,修改原图像灰度级,获得输出图像,其直方图为近似均匀分布

2.4 例子

2.5 直方图匹配

1. 直方图匹配是指生成具有指定直方图的已处理图像。

2. 离散情况下直方图匹配的过程:

2.6 例子

2.7 一道例题

三、空间滤波器

3.1 定义

3.2 例子

四、平滑空间滤波器

4.1 作用与分类

1. 平滑空间滤波器的作用:(1) 模糊处理:去除图像中一些不重要的细节。 (2) 减小噪声。

2. 平滑空间滤波器的分类:(1) 线性滤波器:均值滤波器。 (2) 非线性滤波器:①最大值滤波器 ②中值滤波器 ③最小值滤波器

4.2 线性滤波器

1. 线性滤波器其特点是对图像中像素的计算是线性的。具体来说,这种滤波器通过对图像中的每个像素及其邻域进行线性运算来得出新的像素值。这些线性运算可以包括平滑加权求和、卷积等。

2. 作用:(1) 减小图像灰度的 "尖锐" 变化,减小噪声。(2) 由于图像边缘是由灰度尖锐变化引起的,所以也存在边缘模糊问题。

3. 计算公式:

五、统计排序滤波器

5.1 定义与分类

1. 统计排序滤波器:是一种非线性滤波器,基于滤波器所在图像区域中像素的排序,由排序结果决定的值代替中心像素的值。

2. 分类:(1) 中值滤波器:用像素领域内的中间值代替该像素。 (2) 最大值滤波器:用像素领域内的最大值代替该像素。 (3) 最小值滤波器:用像素领域内的最小值代替该像素。

5.2 计算公式

相关推荐
极客代码3 分钟前
【Python TensorFlow】进阶指南(续篇三)
开发语言·人工智能·python·深度学习·tensorflow
zhangfeng11333 分钟前
pytorch 的交叉熵函数,多分类,二分类
人工智能·pytorch·分类
Seeklike4 分钟前
11.22 深度学习-pytorch自动微分
人工智能·pytorch·深度学习
庞传奇5 分钟前
TensorFlow 的基本概念和使用场景
人工智能·python·tensorflow
华清远见IT开放实验室12 分钟前
【每天学点AI】实战图像增强技术在人工智能图像处理中的应用
图像处理·人工智能·python·opencv·计算机视觉
OpenVINO 中文社区21 分钟前
实战精选|如何使用 OpenVINO™ 在 ElectronJS 中创建桌面应用程序
人工智能·openvino
只怕自己不够好26 分钟前
《OpenCV 图像缩放、翻转与变换全攻略:从基础操作到高级应用实战》
人工智能·opencv·计算机视觉
网络研究院32 分钟前
国土安全部发布关键基础设施安全人工智能框架
人工智能·安全·框架·关键基础设施
不去幼儿园2 小时前
【MARL】深入理解多智能体近端策略优化(MAPPO)算法与调参
人工智能·python·算法·机器学习·强化学习
想成为高手4992 小时前
生成式AI在教育技术中的应用:变革与创新
人工智能·aigc