机器学习-04-分类算法-01决策树案例

总结

本系列是机器学习课程的系列课程,主要介绍机器学习中分类算法,本篇为分类算法开篇与决策树部分。

本门课程的目标

完成一个特定行业的算法应用全过程:

懂业务+会选择合适的算法+数据处理+算法训练+算法调优+算法融合

+算法评估+持续调优+工程化接口实现

机器学习案例

安装可视化库Graphviz

graphviz下载地址

下载后,解压,移动路径如下

python 复制代码
D:\Graphviz-10.0.1-win64\bin

添加环境变量:

html 复制代码
D:\Graphviz-10.0.1-win64\bin

安装graphviz的python库

html 复制代码
pip install graphviz==0.20.1

决策树代码

核心类:

python 复制代码
sklearn.tree.DecisionTreeClassifier(
	criterion='entropy', 
	max_depth=None, 
	min_samples_split=2, 
	min_samples_leaf=1, 
	min_weight_fraction_leaf=0.0, 
	random_state=None, 
	max_leaf_nodes=None, 
	)

参考:
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html#sklearn.tree.DecisionTreeClassifier

完整代码:

python 复制代码
#引入load_iris
from sklearn.datasets import load_iris
#引入tree
from sklearn import tree
#用于画出图形
import graphviz 
#在window设置graphviz的路径
import os
os.environ["PATH"] += os.pathsep + 'D:\Graphviz-10.0.1-win64\bin'

#加载数据
iris = load_iris()
#创建决策树分类器
clf = tree.DecisionTreeClassifier()
#训练
clf = clf.fit(iris.data, iris.target)


print(iris.data[0:5])

输出为:

array([[5.1, 3.5, 1.4, 0.2],

4.9, 3. , 1.4, 0.2\], \[4.7, 3.2, 1.3, 0.2\], \[4.6, 3.1, 1.5, 0.2\], \[5. , 3.6, 1.4, 0.2

python 复制代码
import joblib
joblib.dump(clf,'tree.pkl')
tree = joblib.load('tree.pkl')
tree.predict([[5.1, 3.5, 1.4, 0.2]])

输出为:

array([0])

python 复制代码
#通过graphviz将模型保存
dot_data = tree.export_graphviz(clf, out_file=None,filled=True, rounded=True, 
special_characters=True) 
#设置graphviz的数据源
graph = graphviz.Source(dot_data) 
#显示图片
#graph.save()
graph

输出为:

确定方向过程

针对完全没有基础的同学们

1.确定机器学习的应用领域有哪些

2.查找机器学习的算法应用有哪些

3.确定想要研究的领域极其对应的算法

4.通过招聘网站和论文等确定具体的技术

5.了解业务流程,查找数据

6.复现经典算法

7.持续优化,并尝试与对应企业人员沟通心得

8.企业给出反馈

相关推荐
产品经理独孤虾6 小时前
人工智能大模型如何助力电商产品经理打造高效的商品工业属性画像
人工智能·机器学习·ai·大模型·产品经理·商品画像·商品工业属性
胖达不服输9 小时前
「日拱一码」020 机器学习——数据处理
人工智能·python·机器学习·数据处理
吹风看太阳12 小时前
机器学习16-总体架构
人工智能·机器学习
jerwey13 小时前
大语言模型(LLM)按架构分类
人工智能·语言模型·分类
微学AI13 小时前
遥感影像岩性分类:基于CNN与CNN-EL集成学习的深度学习方法
深度学习·分类·cnn
AI生存日记14 小时前
AI 行业早报:微软发布诊断工具,上海聚焦四大应用场景
人工智能·microsoft·机器学习·open ai大模型
FF-Studio17 小时前
大语言模型(LLM)课程学习(Curriculum Learning)、数据课程(data curriculum)指南:从原理到实践
人工智能·python·深度学习·神经网络·机器学习·语言模型·自然语言处理
狗头大军之江苏分军18 小时前
疑似华为盘古AI大模型翻车造假风波【实时记录篇】
人工智能·机器学习·程序员
LucianaiB20 小时前
Chatbox➕知识库➕Mcp = 机器学习私人语音助手
机器学习·知识库·mcp·chatbox
拓端研究室1 天前
视频讲解|核密度估计朴素贝叶斯:业务数据分类—从理论到实践
人工智能·分类·数据挖掘