首先上代码:
# 禁用词,包含如下字符的唐诗将被忽略
DISALLOWED_WORDS = ['(', ')', '(', ')', '__', '《', '》', '【', '】', '[', ']']
# 句子最大长度
MAX_LEN = 64
# 最小词频
MIN_WORD_FREQUENCY = 8
# 训练的batch size
BATCH_SIZE = 16
# 数据集路径
DATASET_PATH = './poetry.txt'
# 每个epoch训练完成后,随机生成SHOW_NUM首古诗作为展示
SHOW_NUM = 5
# 共训练多少个epoch
TRAIN_EPOCHS = 20
# 最佳权重保存路径
BEST_MODEL_PATH = './best_model.h5'
from collections import Counter
import math
import numpy as np
import tensorflow as tf
import settings
class Tokenizer:
"""
分词器
"""
def __init__(self, token_dict):
# 词->编号的映射
self.token_dict = token_dict
# 编号->词的映射
self.token_dict_rev = {value: key for key, value in self.token_dict.items()}
# 词汇表大小
self.vocab_size = len(self.token_dict)
def id_to_token(self, token_id):
"""
给定一个编号,查找词汇表中对应的词
:param token_id: 带查找词的编号
:return: 编号对应的词
"""
return self.token_dict_rev[token_id]
def token_to_id(self, token):
"""
给定一个词,查找它在词汇表中的编号
未找到则返回低频词[UNK]的编号
:param token: 带查找编号的词
:return: 词的编号
"""
return self.token_dict.get(token, self.token_dict['[UNK]'])
def encode(self, tokens):
"""
给定一个字符串s,在头尾分别加上标记开始和结束的特殊字符,并将它转成对应的编号序列
:param tokens: 待编码字符串
:return: 编号序列
"""
# 加上开始标记
token_ids = [self.token_to_id('[CLS]'), ]
# 加入字符串编号序列
for token in tokens:
token_ids.append(self.token_to_id(token))
# 加上结束标记
token_ids.append(self.token_to_id('[SEP]'))
return token_ids
def decode(self, token_ids):
"""
给定一个编号序列,将它解码成字符串
:param token_ids: 待解码的编号序列
:return: 解码出的字符串
"""
# 起止标记字符特殊处理
spec_tokens = {'[CLS]', '[SEP]'}
# 保存解码出的字符的list
tokens = []
for token_id in token_ids:
token = self.id_to_token(token_id)
if token in spec_tokens:
continue
tokens.append(token)
# 拼接字符串
return ''.join(tokens)
# 禁用词
disallowed_words = settings.DISALLOWED_WORDS
# 句子最大长度
max_len = settings.MAX_LEN
# 最小词频
min_word_frequency = settings.MIN_WORD_FREQUENCY
# mini batch 大小
batch_size = settings.BATCH_SIZE
# 加载数据集
with open(settings.DATASET_PATH, 'r', encoding='utf-8') as f:
lines = f.readlines()
# 将冒号统一成相同格式
lines = [line.replace(':', ':') for line in lines]
# 数据集列表
poetry = []
# 逐行处理读取到的数据
for line in lines:
# 有且只能有一个冒号用来分割标题
if line.count(':') != 1:
continue
# 后半部分不能包含禁止词
__, last_part = line.split(':')
ignore_flag = False
for dis_word in disallowed_words:
if dis_word in last_part:
ignore_flag = True
break
if ignore_flag:
continue
# 长度不能超过最大长度
if len(last_part) > max_len - 2:
continue
poetry.append(last_part.replace('\n', ''))
# 统计词频
counter = Counter()
for line in poetry:
counter.update(line)
# 过滤掉低频词
_tokens = [(token, count) for token, count in counter.items() if count >= min_word_frequency]
# 按词频排序
_tokens = sorted(_tokens, key=lambda x: -x[1])
# 去掉词频,只保留词列表
_tokens = [token for token, count in _tokens]
# 将特殊词和数据集中的词拼接起来
_tokens = ['[PAD]', '[UNK]', '[CLS]', '[SEP]'] + _tokens
# 创建词典 token->id映射关系
token_id_dict = dict(zip(_tokens, range(len(_tokens))))
# 使用新词典重新建立分词器
tokenizer = Tokenizer(token_id_dict)
# 混洗数据
np.random.shuffle(poetry)
class PoetryDataGenerator:
"""
古诗数据集生成器
"""
def __init__(self, data, random=False):
# 数据集
self.data = data
# batch size
self.batch_size = batch_size
# 每个epoch迭代的步数
self.steps = int(math.floor(len(self.data) / self.batch_size))
# 每个epoch开始时是否随机混洗
self.random = random
def sequence_padding(self, data, length=None, padding=None):
"""
将给定数据填充到相同长度
:param data: 待填充数据
:param length: 填充后的长度,不传递此参数则使用data中的最大长度
:param padding: 用于填充的数据,不传递此参数则使用[PAD]的对应编号
:return: 填充后的数据
"""
# 计算填充长度
if length is None:
length = max(map(len, data))
# 计算填充数据
if padding is None:
padding = tokenizer.token_to_id('[PAD]')
# 开始填充
outputs = []
for line in data:
padding_length = length - len(line)
# 不足就进行填充
if padding_length > 0:
outputs.append(np.concatenate([line, [padding] * padding_length]))
# 超过就进行截断
else:
outputs.append(line[:length])
return np.array(outputs)
def __len__(self):
return self.steps
def __iter__(self):
total = len(self.data)
# 是否随机混洗
if self.random:
np.random.shuffle(self.data)
# 迭代一个epoch,每次yield一个batch
for start in range(0, total, self.batch_size):
end = min(start + self.batch_size, total)
batch_data = []
# 逐一对古诗进行编码
for single_data in self.data[start:end]:
batch_data.append(tokenizer.encode(single_data))
# 填充为相同长度
batch_data = self.sequence_padding(batch_data)
# yield x,y
yield batch_data[:, :-1], tf.one_hot(batch_data[:, 1:], tokenizer.vocab_size)
del batch_data
def for_fit(self):
"""
创建一个生成器,用于训练
"""
# 死循环,当数据训练一个epoch之后,重新迭代数据
while True:
# 委托生成器
yield from self.__iter__()
import numpy as np
import settings
def generate_random_poetry(tokenizer, model, s=''):
"""
随机生成一首诗
:param tokenizer: 分词器
:param model: 用于生成古诗的模型
:param s: 用于生成古诗的起始字符串,默认为空串
:return: 一个字符串,表示一首古诗
"""
# 将初始字符串转成token
token_ids = tokenizer.encode(s)
# 去掉结束标记[SEP]
token_ids = token_ids[:-1]
while len(token_ids) < settings.MAX_LEN:
# 进行预测,只保留第一个样例(我们输入的样例数只有1)的、最后一个token的预测的、不包含[PAD][UNK][CLS]的概率分布
output = model(np.array([token_ids, ], dtype=np.int32))
_probas = output.numpy()[0, -1, 3:]
del output
# print(_probas)
# 按照出现概率,对所有token倒序排列
p_args = _probas.argsort()[::-1][:100]
# 排列后的概率顺序
p = _probas[p_args]
# 先对概率归一
p = p / sum(p)
# 再按照预测出的概率,随机选择一个词作为预测结果
target_index = np.random.choice(len(p), p=p)
target = p_args[target_index] + 3
# 保存
token_ids.append(target)
if target == 3:
break
return tokenizer.decode(token_ids)
def generate_acrostic(tokenizer, model, head):
"""
随机生成一首藏头诗
:param tokenizer: 分词器
:param model: 用于生成古诗的模型
:param head: 藏头诗的头
:return: 一个字符串,表示一首古诗
"""
# 使用空串初始化token_ids,加入[CLS]
token_ids = tokenizer.encode('')
token_ids = token_ids[:-1]
# 标点符号,这里简单的只把逗号和句号作为标点
punctuations = [',', '。']
punctuation_ids = {tokenizer.token_to_id(token) for token in punctuations}
# 缓存生成的诗的list
poetry = []
# 对于藏头诗中的每一个字,都生成一个短句
for ch in head:
# 先记录下这个字
poetry.append(ch)
# 将藏头诗的字符转成token id
token_id = tokenizer.token_to_id(ch)
# 加入到列表中去
token_ids.append(token_id)
# 开始生成一个短句
while True:
# 进行预测,只保留第一个样例(我们输入的样例数只有1)的、最后一个token的预测的、不包含[PAD][UNK][CLS]的概率分布
output = model(np.array([token_ids, ], dtype=np.int32))
_probas = output.numpy()[0, -1, 3:]
del output
# 按照出现概率,对所有token倒序排列
p_args = _probas.argsort()[::-1][:100]
# 排列后的概率顺序
p = _probas[p_args]
# 先对概率归一
p = p / sum(p)
# 再按照预测出的概率,随机选择一个词作为预测结果
target_index = np.random.choice(len(p), p=p)
target = p_args[target_index] + 3
# 保存
token_ids.append(target)
# 只有不是特殊字符时,才保存到poetry里面去
if target > 3:
poetry.append(tokenizer.id_to_token(target))
if target in punctuation_ids:
break
return ''.join(poetry)
import tensorflow as tf
from dataset import tokenizer
# 构建模型
model = tf.keras.Sequential([
# 不定长度的输入
tf.keras.layers.Input((None,)),
# 词嵌入层
tf.keras.layers.Embedding(input_dim=tokenizer.vocab_size, output_dim=128),
# 第一个LSTM层,返回序列作为下一层的输入
tf.keras.layers.LSTM(128, dropout=0.5, return_sequences=True),
# 第二个LSTM层,返回序列作为下一层的输入
tf.keras.layers.LSTM(128, dropout=0.5, return_sequences=True),
# 对每一个时间点的输出都做softmax,预测下一个词的概率
tf.keras.layers.TimeDistributed(tf.keras.layers.Dense(tokenizer.vocab_size, activation='softmax')),
])
# 查看模型结构
model.summary()
# 配置优化器和损失函数
model.compile(optimizer=tf.keras.optimizers.Adam(), loss=tf.keras.losses.categorical_crossentropy)
import tensorflow as tf
from dataset import PoetryDataGenerator, poetry, tokenizer
from model import model
import settings
import utils
class Evaluate(tf.keras.callbacks.Callback):
"""
在每个epoch训练完成后,保留最优权重,并随机生成settings.SHOW_NUM首古诗展示
"""
def __init__(self):
super().__init__()
# 给loss赋一个较大的初始值
self.lowest = 1e10
def on_epoch_end(self, epoch, logs=None):
# 在每个epoch训练完成后调用
# 如果当前loss更低,就保存当前模型参数
if logs['loss'] <= self.lowest:
self.lowest = logs['loss']
model.save(settings.BEST_MODEL_PATH)
# 随机生成几首古体诗测试,查看训练效果
print()
for i in range(settings.SHOW_NUM):
print(utils.generate_random_poetry(tokenizer, model))
# 创建数据集
data_generator = PoetryDataGenerator(poetry, random=True)
# 开始训练
model.fit_generator(data_generator.for_fit(), steps_per_epoch=data_generator.steps, epochs=settings.TRAIN_EPOCHS,
callbacks=[Evaluate()])
import tensorflow as tf
from dataset import tokenizer
import settings
import utils
# 加载训练好的模型
model = tf.keras.models.load_model(settings.BEST_MODEL_PATH)
# 随机生成一首诗
print(utils.generate_random_poetry(tokenizer, model))
# 给出部分信息的情况下,随机生成剩余部分
print(utils.generate_random_poetry(tokenizer, model, s='床前明月光,'))
# 生成藏头诗
print(utils.generate_acrostic(tokenizer, model, head='海阔天空'))