[Prob] (Coupon collector)

Suppose there are n types of toys, which you are collecting one by one, with the goal of getting a complete set. When collecting toys, the toy types are random (as is sometimes the case, for example, with toys included in cereal boxes or included with kids' meals from a fast food restaurant).

Assume that each time you collect a toy, it is equally likely to be any of the n types. What is the expected number of toys needed until you have a complete set?

Solution: Let N be the number of toys needed; we want to find E(N). Our strategy will be to break up N into a sum of simpler r.v.s so that we can apply linearity. So write

N = N1 + N2 + · · · + Nn,

where N1 is the number of toys until the first toy type you haven't seen before (which is always 1, as the first toy is always a new type), N2 is the additional number of toys until the second toy type you haven't seen before, and so forth.

with

相关推荐
我要学习别拦我~2 天前
挑战概率直觉:蒙提霍尔问题的解密与应用
经验分享·概率论
一条星星鱼2 天前
从0到1:如何用统计学“看透”不同睡眠PSG数据集的差异(域偏差分析实战)
人工智能·深度学习·算法·概率论·归一化·睡眠psg
无风听海2 天前
神经网络之从自由度角度理解方差的无偏估计
神经网络·机器学习·概率论
CLubiy3 天前
【研究生随笔】PyTorch中的概率论
人工智能·pytorch·深度学习·概率论
龙俊杰的读书笔记3 天前
《小白学随机过程》第一章:随机过程——定义和形式 (附录1 探究随机变量)
人工智能·机器学习·概率论·随机过程和rl
zyq~4 天前
【课堂笔记】概率论-1
笔记·概率论
十二imin11 天前
霍夫丁不等式详解
算法·机器学习·概率论
牟同學13 天前
从赌场到AI:期望值如何用C++改变世界?
c++·人工智能·概率论
likunyuan083017 天前
概率统计中的数学语言与术语2
概率论
MoRanzhi120322 天前
0. NumPy 系列教程:科学计算与数据分析实战
人工智能·python·机器学习·数据挖掘·数据分析·numpy·概率论