[Prob] (Coupon collector)

Suppose there are n types of toys, which you are collecting one by one, with the goal of getting a complete set. When collecting toys, the toy types are random (as is sometimes the case, for example, with toys included in cereal boxes or included with kids' meals from a fast food restaurant).

Assume that each time you collect a toy, it is equally likely to be any of the n types. What is the expected number of toys needed until you have a complete set?

Solution: Let N be the number of toys needed; we want to find E(N). Our strategy will be to break up N into a sum of simpler r.v.s so that we can apply linearity. So write

N = N1 + N2 + · · · + Nn,

where N1 is the number of toys until the first toy type you haven't seen before (which is always 1, as the first toy is always a new type), N2 is the additional number of toys until the second toy type you haven't seen before, and so forth.

with

相关推荐
微小冷5 天前
二关节机器人系统模型推导
线性代数·机器人·概率论·推导·拉格朗日函数·二关节机器人·机器人控制系统的设计
软件开发技术深度爱好者6 天前
概率中“都发生”和“至少一个”问题的解答
概率论·数学广角
FF-Studio8 天前
【硬核数学】3. AI如何应对不确定性?概率论为模型注入“灵魂”《从零构建机器学习、深度学习到LLM的数学认知》
大数据·人工智能·深度学习·机器学习·数学建模·自然语言处理·概率论
如果你想拥有什么先让自己配得上拥有18 天前
概率论中的生日问题,违背直觉?如何计算? 以及从人性金融的角度分析如何违背直觉的?
金融·概率论
云博客-资源宝18 天前
Excel函数大全
机器学习·excel·概率论
爱学习的capoo20 天前
【解析法与几何法在阻尼比设计】自控
线性代数·机器学习·概率论
TomcatLikeYou22 天前
概率论中的基本定义(事件,期望,信息量,香农熵等)
深度学习·机器学习·概率论
phoenix@Capricornus24 天前
期望最大化(EM)算法的推导——Q函数
算法·机器学习·概率论
Algo-hx25 天前
概率论的基本概念:开启不确定性世界的数学之旅
概率论
Algo-hx25 天前
随机变量及其分布:概率论的量化核心
概率论