期望最大化(EM)算法的推导——Q函数

先导:① 詹森不等式(Jensen's Inequality)

一般情况下的期望最大化(EM)算法

离散隐藏变量下期望最大化(EM)算法的简化


对于一个含有隐变量的概率模型,极大化观测数据(不完全数据) X X X关于参数 θ \theta θ的对数似然函数,即极大化

L ( θ ) = log ⁡ P ( X ∣ θ ) = log ⁡ ∑ Z P ( X , Z ∣ θ ) = log ⁡ ( ∑ Z P ( X ∣ Z , θ ) P ( Z ∣ θ ) ) (12) L(\theta) = \log P(X \mid \theta) = \log \sum_{Z} P(X, Z \mid \theta)\\ = \log \left( \sum_{Z} P(X \mid Z, \theta)P(Z \mid \theta) \right) \tag{12} L(θ)=logP(X∣θ)=logZ∑P(X,Z∣θ)=log(Z∑P(X∣Z,θ)P(Z∣θ))(12)

注意到这一极大化的主要困难是式 (12) 中有未观测数据并有包含和(或积分)的对数。

事实上,EM 算法通过迭代逐步近似极大化 L ( θ ) L(\theta) L(θ)。假设在第 i i i次迭代后 θ \theta θ的估计值是 θ ( i ) \theta^{(i)} θ(i)。希望新估计值 θ \theta θ能使 L ( θ ) L(\theta) L(θ)增加,即 L ( θ ) > L ( θ ( i ) ) L(\theta) > L(\theta^{(i)}) L(θ)>L(θ(i)),并逐步达到极大值。为此,考虑两者的差:

L ( θ ) − L ( θ ( i ) ) = log ⁡ ( ∑ Z P ( X ∣ Z , θ ) P ( Z ∣ θ ) ) − log ⁡ P ( X ∣ θ ( i ) ) (13) L(\theta) - L(\theta^{(i)}) = \log \left( \sum_{Z} P(X \mid Z, \theta)P(Z \mid \theta) \right) - \log P(X \mid \theta^{(i)})\tag{13} L(θ)−L(θ(i))=log(Z∑P(X∣Z,θ)P(Z∣θ))−logP(X∣θ(i))(13)

利用 Jensen 不等式得到其下界:

L ( θ ) − L ( θ ( i ) ) = log ⁡ ( ∑ Z P ( Z ∣ X , θ ( i ) ) P ( X ∣ Z , θ ) P ( Z ∣ θ ) P ( Z ∣ X , θ ( i ) ) ) − log ⁡ P ( X ∣ θ ( i ) ) ⩾ ∑ Z P ( Z ∣ X , θ ( i ) ) log ⁡ P ( X ∣ Z , θ ) P ( Z ∣ θ ) P ( Z ∣ X , θ ( i ) ) − log ⁡ P ( X ∣ θ ( i ) ) = ∑ Z P ( Z ∣ X , θ ( i ) ) log ⁡ P ( X ∣ Z , θ ) P ( Z ∣ θ ) P ( Z ∣ X , θ ( i ) ) P ( X ∣ θ ( i ) ) \begin{aligned} L(\theta) - L(\theta^{(i)}) & = \log \left( \sum_{Z} P(Z \mid X, \theta^{(i)}) \frac{P(X \mid Z, \theta) P(Z \mid \theta)}{P(Z \mid X, \theta^{(i)})} \right) - \log P(X \mid \theta^{(i)}) \\ & \geqslant \sum_{Z} P(Z \mid X, \theta^{(i)}) \log \frac{P(X \mid Z, \theta) P(Z \mid \theta)}{P(Z \mid X, \theta^{(i)})} - \log P(X \mid \theta^{(i)}) \\ & = \sum_{Z} P(Z \mid X, \theta^{(i)}) \log \frac{P(X \mid Z, \theta) P(Z \mid \theta)}{P(Z \mid X, \theta^{(i)}) P(X \mid \theta^{(i)})} \end{aligned} L(θ)−L(θ(i))=log(Z∑P(Z∣X,θ(i))P(Z∣X,θ(i))P(X∣Z,θ)P(Z∣θ))−logP(X∣θ(i))⩾Z∑P(Z∣X,θ(i))logP(Z∣X,θ(i))P(X∣Z,θ)P(Z∣θ)−logP(X∣θ(i))=Z∑P(Z∣X,θ(i))logP(Z∣X,θ(i))P(X∣θ(i))P(X∣Z,θ)P(Z∣θ)

B ( θ ∣ X , θ ( i ) ) ≜ L ( θ ( i ) ) + ∑ Z P ( Z ∣ X , θ ( i ) ) log ⁡ P ( X ∣ Z , θ ) P ( Z ∣ θ ) P ( Z ∣ X , θ ( i ) ) P ( X ∣ θ ( i ) ) B(\theta \mid X, \theta^{(i)}) \triangleq L(\theta^{(i)}) + \sum_{Z} P(Z \mid X, \theta^{(i)}) \log \frac{P(X \mid Z, \theta) P(Z \mid \theta)}{P(Z \mid X, \theta^{(i)}) P(X \mid \theta^{(i)})} B(θ∣X,θ(i))≜L(θ(i))+Z∑P(Z∣X,θ(i))logP(Z∣X,θ(i))P(X∣θ(i))P(X∣Z,θ)P(Z∣θ)

L ( θ ) ⩾ B ( θ ∣ X , θ ( i ) ) L(\theta) \geqslant B(\theta\mid X, \theta^{(i)}) L(θ)⩾B(θ∣X,θ(i))

即函数 B ( θ ∣ X , θ ( i ) ) B(\theta\mid X, \theta^{(i)}) B(θ∣X,θ(i))是 L ( θ ) L(\theta) L(θ)的一个下界,而且由式 (13) 可知,

L ( θ ( i ) ) = B ( θ ( i ) ∣ X , θ ( i ) ) L(\theta^{(i)}) = B(\theta^{(i)}\mid X, \theta^{(i)}) L(θ(i))=B(θ(i)∣X,θ(i))

因此,任何可以使 B ( θ ∣ X , θ ( i ) ) B(\theta\mid X, \theta^{(i)}) B(θ∣X,θ(i))增大的 θ \theta θ,也可以使 L ( θ ) L(\theta) L(θ)增大。为了使 L ( θ ) L(\theta) L(θ)有尽可能大的增长,选择 θ ( i + 1 ) \theta^{(i+1)} θ(i+1)使 B ( θ ∣ X , θ ( i ) ) B(\theta\mid X, \theta^{(i)}) B(θ∣X,θ(i))达到极大,即

θ ( i + 1 ) = arg ⁡ max ⁡ θ B ( θ ∣ X , θ ( i ) ) (16) \theta^{(i+1)} = \arg \max_{\theta} B(\theta\mid X, \theta^{(i)})\tag{16} θ(i+1)=argθmaxB(θ∣X,θ(i))(16)

现在求 θ ( i + 1 ) \theta^{(i+1)} θ(i+1)的表达式。省去对 θ \theta θ的极大化而言是常数的项,由式 (16)及式 (13),有

θ ( i + 1 ) = arg ⁡ max ⁡ θ ( L ( θ ( i ) ) + ∑ Z P ( Z ∣ X , θ ( i ) ) log ⁡ P ( X ∣ Z , θ ) P ( Z ∣ θ ) P ( Z ∣ X , θ ( i ) ) P ( X ∣ θ ( i ) ) ) = arg ⁡ max ⁡ θ ( ∑ Z P ( Z ∣ X , θ ( i ) ) log ⁡ ( P ( X ∣ Z , θ ) P ( Z ∣ θ ) ) ) = arg ⁡ max ⁡ θ ( ∑ Z P ( Z ∣ X , θ ( i ) ) log ⁡ P ( X , Z ∣ θ ) ) = arg ⁡ max ⁡ θ Q ( θ ∣ X , θ ( i ) ) (17) \begin{aligned} \theta^{(i+1)} & = \arg \max_{\theta} \left( L(\theta^{(i)}) + \sum_{Z} P(Z \mid X, \theta^{(i)}) \log \frac{P(X \mid Z, \theta) P(Z \mid \theta)}{P(Z \mid X, \theta^{(i)}) P(X \mid \theta^{(i)})} \right) \\ & = \arg \max_{\theta} \left( \sum_{Z} P(Z \mid X, \theta^{(i)}) \log (P(X \mid Z, \theta) P(Z \mid \theta)) \right) \\ & = \arg \max_{\theta} \left( \sum_{Z} P(Z \mid X, \theta^{(i)}) \log P(X, Z \mid \theta) \right) \\ & = \arg \max_{\theta} Q(\theta\mid X, \theta^{(i)}) \end{aligned}\tag{17} θ(i+1)=argθmax(L(θ(i))+Z∑P(Z∣X,θ(i))logP(Z∣X,θ(i))P(X∣θ(i))P(X∣Z,θ)P(Z∣θ))=argθmax(Z∑P(Z∣X,θ(i))log(P(X∣Z,θ)P(Z∣θ)))=argθmax(Z∑P(Z∣X,θ(i))logP(X,Z∣θ))=argθmaxQ(θ∣X,θ(i))(17)

式 (17) 等价于 EM 算法的一次迭代,即求 Q Q Q函数及其极大化。EM 算法是通过不断求解下界的极大化逼近求解对数似然函数极大化的算法。

由式 (16) 和式 (17),EM 算法找到下一个点 θ ( i + 1 ) \theta^{(i+1)} θ(i+1)使函数 B ( θ ∣ X , θ ( i ) ) B(\theta\mid X, \theta^{(i)}) B(θ∣X,θ(i))极大化,也使函数 Q ( θ ∣ X , θ ( i ) ) Q(\theta\mid X, \theta^{(i)}) Q(θ∣X,θ(i))极大化。这时由于 L ( θ ) ⩾ B ( θ ∣ X , θ ( i ) ) L(\theta) \geqslant B(\theta\mid X, \theta^{(i)}) L(θ)⩾B(θ∣X,θ(i)),函数 B ( θ ∣ X , θ ( i ) ) B(\theta\mid X, \theta^{(i)}) B(θ∣X,θ(i))的增加,保证对数似然函数 L ( θ ) L(\theta) L(θ)在每次迭代中也是增加的。EM 算法在点 θ ( i + 1 ) \theta^{(i+1)} θ(i+1)重新计算 Q Q Q函数值,进行下一次迭代。在这个过程中,对数似然函数 L ( θ ) L(\theta) L(θ)不断增大。从图可以推断出 EM 算法不能保证找到全局最优值。

相关推荐
冰西瓜6005 小时前
从项目入手机器学习——鸢尾花分类
人工智能·机器学习·分类·数据挖掘
爱思德学术5 小时前
中国计算机学会(CCF)推荐学术会议-C(人工智能):IJCNN 2026
人工智能·神经网络·机器学习
长安er6 小时前
LeetCode215/347/295 堆相关理论与题目
java·数据结构·算法·leetcode·
元亓亓亓6 小时前
LeetCode热题100--62. 不同路径--中等
算法·leetcode·职场和发展
小白菜又菜6 小时前
Leetcode 1925. Count Square Sum Triples
算法·leetcode
登山人在路上7 小时前
Nginx三种会话保持算法对比
算法·哈希算法·散列表
写代码的小球7 小时前
C++计算器(学生版)
c++·算法
AI科技星8 小时前
张祥前统一场论宇宙大统一方程的求导验证
服务器·人工智能·科技·线性代数·算法·生活
Fuly10248 小时前
大模型剪枝(Pruning)技术简介
算法·机器学习·剪枝
Xの哲學8 小时前
Linux网卡注册流程深度解析: 从硬件探测到网络栈
linux·服务器·网络·算法·边缘计算