期望最大化(EM)算法的推导——Q函数

先导:① 詹森不等式(Jensen's Inequality)

一般情况下的期望最大化(EM)算法

离散隐藏变量下期望最大化(EM)算法的简化


对于一个含有隐变量的概率模型,极大化观测数据(不完全数据) X X X关于参数 θ \theta θ的对数似然函数,即极大化

L ( θ ) = log ⁡ P ( X ∣ θ ) = log ⁡ ∑ Z P ( X , Z ∣ θ ) = log ⁡ ( ∑ Z P ( X ∣ Z , θ ) P ( Z ∣ θ ) ) (12) L(\theta) = \log P(X \mid \theta) = \log \sum_{Z} P(X, Z \mid \theta)\\ = \log \left( \sum_{Z} P(X \mid Z, \theta)P(Z \mid \theta) \right) \tag{12} L(θ)=logP(X∣θ)=logZ∑P(X,Z∣θ)=log(Z∑P(X∣Z,θ)P(Z∣θ))(12)

注意到这一极大化的主要困难是式 (12) 中有未观测数据并有包含和(或积分)的对数。

事实上,EM 算法通过迭代逐步近似极大化 L ( θ ) L(\theta) L(θ)。假设在第 i i i次迭代后 θ \theta θ的估计值是 θ ( i ) \theta^{(i)} θ(i)。希望新估计值 θ \theta θ能使 L ( θ ) L(\theta) L(θ)增加,即 L ( θ ) > L ( θ ( i ) ) L(\theta) > L(\theta^{(i)}) L(θ)>L(θ(i)),并逐步达到极大值。为此,考虑两者的差:

L ( θ ) − L ( θ ( i ) ) = log ⁡ ( ∑ Z P ( X ∣ Z , θ ) P ( Z ∣ θ ) ) − log ⁡ P ( X ∣ θ ( i ) ) (13) L(\theta) - L(\theta^{(i)}) = \log \left( \sum_{Z} P(X \mid Z, \theta)P(Z \mid \theta) \right) - \log P(X \mid \theta^{(i)})\tag{13} L(θ)−L(θ(i))=log(Z∑P(X∣Z,θ)P(Z∣θ))−logP(X∣θ(i))(13)

利用 Jensen 不等式得到其下界:

L ( θ ) − L ( θ ( i ) ) = log ⁡ ( ∑ Z P ( Z ∣ X , θ ( i ) ) P ( X ∣ Z , θ ) P ( Z ∣ θ ) P ( Z ∣ X , θ ( i ) ) ) − log ⁡ P ( X ∣ θ ( i ) ) ⩾ ∑ Z P ( Z ∣ X , θ ( i ) ) log ⁡ P ( X ∣ Z , θ ) P ( Z ∣ θ ) P ( Z ∣ X , θ ( i ) ) − log ⁡ P ( X ∣ θ ( i ) ) = ∑ Z P ( Z ∣ X , θ ( i ) ) log ⁡ P ( X ∣ Z , θ ) P ( Z ∣ θ ) P ( Z ∣ X , θ ( i ) ) P ( X ∣ θ ( i ) ) \begin{aligned} L(\theta) - L(\theta^{(i)}) & = \log \left( \sum_{Z} P(Z \mid X, \theta^{(i)}) \frac{P(X \mid Z, \theta) P(Z \mid \theta)}{P(Z \mid X, \theta^{(i)})} \right) - \log P(X \mid \theta^{(i)}) \\ & \geqslant \sum_{Z} P(Z \mid X, \theta^{(i)}) \log \frac{P(X \mid Z, \theta) P(Z \mid \theta)}{P(Z \mid X, \theta^{(i)})} - \log P(X \mid \theta^{(i)}) \\ & = \sum_{Z} P(Z \mid X, \theta^{(i)}) \log \frac{P(X \mid Z, \theta) P(Z \mid \theta)}{P(Z \mid X, \theta^{(i)}) P(X \mid \theta^{(i)})} \end{aligned} L(θ)−L(θ(i))=log(Z∑P(Z∣X,θ(i))P(Z∣X,θ(i))P(X∣Z,θ)P(Z∣θ))−logP(X∣θ(i))⩾Z∑P(Z∣X,θ(i))logP(Z∣X,θ(i))P(X∣Z,θ)P(Z∣θ)−logP(X∣θ(i))=Z∑P(Z∣X,θ(i))logP(Z∣X,θ(i))P(X∣θ(i))P(X∣Z,θ)P(Z∣θ)

B ( θ ∣ X , θ ( i ) ) ≜ L ( θ ( i ) ) + ∑ Z P ( Z ∣ X , θ ( i ) ) log ⁡ P ( X ∣ Z , θ ) P ( Z ∣ θ ) P ( Z ∣ X , θ ( i ) ) P ( X ∣ θ ( i ) ) B(\theta \mid X, \theta^{(i)}) \triangleq L(\theta^{(i)}) + \sum_{Z} P(Z \mid X, \theta^{(i)}) \log \frac{P(X \mid Z, \theta) P(Z \mid \theta)}{P(Z \mid X, \theta^{(i)}) P(X \mid \theta^{(i)})} B(θ∣X,θ(i))≜L(θ(i))+Z∑P(Z∣X,θ(i))logP(Z∣X,θ(i))P(X∣θ(i))P(X∣Z,θ)P(Z∣θ)

L ( θ ) ⩾ B ( θ ∣ X , θ ( i ) ) L(\theta) \geqslant B(\theta\mid X, \theta^{(i)}) L(θ)⩾B(θ∣X,θ(i))

即函数 B ( θ ∣ X , θ ( i ) ) B(\theta\mid X, \theta^{(i)}) B(θ∣X,θ(i))是 L ( θ ) L(\theta) L(θ)的一个下界,而且由式 (13) 可知,

L ( θ ( i ) ) = B ( θ ( i ) ∣ X , θ ( i ) ) L(\theta^{(i)}) = B(\theta^{(i)}\mid X, \theta^{(i)}) L(θ(i))=B(θ(i)∣X,θ(i))

因此,任何可以使 B ( θ ∣ X , θ ( i ) ) B(\theta\mid X, \theta^{(i)}) B(θ∣X,θ(i))增大的 θ \theta θ,也可以使 L ( θ ) L(\theta) L(θ)增大。为了使 L ( θ ) L(\theta) L(θ)有尽可能大的增长,选择 θ ( i + 1 ) \theta^{(i+1)} θ(i+1)使 B ( θ ∣ X , θ ( i ) ) B(\theta\mid X, \theta^{(i)}) B(θ∣X,θ(i))达到极大,即

θ ( i + 1 ) = arg ⁡ max ⁡ θ B ( θ ∣ X , θ ( i ) ) (16) \theta^{(i+1)} = \arg \max_{\theta} B(\theta\mid X, \theta^{(i)})\tag{16} θ(i+1)=argθmaxB(θ∣X,θ(i))(16)

现在求 θ ( i + 1 ) \theta^{(i+1)} θ(i+1)的表达式。省去对 θ \theta θ的极大化而言是常数的项,由式 (16)及式 (13),有

θ ( i + 1 ) = arg ⁡ max ⁡ θ ( L ( θ ( i ) ) + ∑ Z P ( Z ∣ X , θ ( i ) ) log ⁡ P ( X ∣ Z , θ ) P ( Z ∣ θ ) P ( Z ∣ X , θ ( i ) ) P ( X ∣ θ ( i ) ) ) = arg ⁡ max ⁡ θ ( ∑ Z P ( Z ∣ X , θ ( i ) ) log ⁡ ( P ( X ∣ Z , θ ) P ( Z ∣ θ ) ) ) = arg ⁡ max ⁡ θ ( ∑ Z P ( Z ∣ X , θ ( i ) ) log ⁡ P ( X , Z ∣ θ ) ) = arg ⁡ max ⁡ θ Q ( θ ∣ X , θ ( i ) ) (17) \begin{aligned} \theta^{(i+1)} & = \arg \max_{\theta} \left( L(\theta^{(i)}) + \sum_{Z} P(Z \mid X, \theta^{(i)}) \log \frac{P(X \mid Z, \theta) P(Z \mid \theta)}{P(Z \mid X, \theta^{(i)}) P(X \mid \theta^{(i)})} \right) \\ & = \arg \max_{\theta} \left( \sum_{Z} P(Z \mid X, \theta^{(i)}) \log (P(X \mid Z, \theta) P(Z \mid \theta)) \right) \\ & = \arg \max_{\theta} \left( \sum_{Z} P(Z \mid X, \theta^{(i)}) \log P(X, Z \mid \theta) \right) \\ & = \arg \max_{\theta} Q(\theta\mid X, \theta^{(i)}) \end{aligned}\tag{17} θ(i+1)=argθmax(L(θ(i))+Z∑P(Z∣X,θ(i))logP(Z∣X,θ(i))P(X∣θ(i))P(X∣Z,θ)P(Z∣θ))=argθmax(Z∑P(Z∣X,θ(i))log(P(X∣Z,θ)P(Z∣θ)))=argθmax(Z∑P(Z∣X,θ(i))logP(X,Z∣θ))=argθmaxQ(θ∣X,θ(i))(17)

式 (17) 等价于 EM 算法的一次迭代,即求 Q Q Q函数及其极大化。EM 算法是通过不断求解下界的极大化逼近求解对数似然函数极大化的算法。

由式 (16) 和式 (17),EM 算法找到下一个点 θ ( i + 1 ) \theta^{(i+1)} θ(i+1)使函数 B ( θ ∣ X , θ ( i ) ) B(\theta\mid X, \theta^{(i)}) B(θ∣X,θ(i))极大化,也使函数 Q ( θ ∣ X , θ ( i ) ) Q(\theta\mid X, \theta^{(i)}) Q(θ∣X,θ(i))极大化。这时由于 L ( θ ) ⩾ B ( θ ∣ X , θ ( i ) ) L(\theta) \geqslant B(\theta\mid X, \theta^{(i)}) L(θ)⩾B(θ∣X,θ(i)),函数 B ( θ ∣ X , θ ( i ) ) B(\theta\mid X, \theta^{(i)}) B(θ∣X,θ(i))的增加,保证对数似然函数 L ( θ ) L(\theta) L(θ)在每次迭代中也是增加的。EM 算法在点 θ ( i + 1 ) \theta^{(i+1)} θ(i+1)重新计算 Q Q Q函数值,进行下一次迭代。在这个过程中,对数似然函数 L ( θ ) L(\theta) L(θ)不断增大。从图可以推断出 EM 算法不能保证找到全局最优值。

相关推荐
安全系统学习5 分钟前
网络安全之任意文件读取利用
算法·安全·web安全·网络安全·哈希算法
电院工程师9 分钟前
2.4 Python基础概念:通过一个文字冒险游戏学习编程
开发语言·python·学习·算法·游戏·游戏程序
没故事的燕同学40 分钟前
[GESP202306 三级] 密码合规
算法
量化投资和人工智能44 分钟前
【CUDA编程】OptionalCUDAGuard详解
c++·人工智能·python·机器学习·云计算·cuda
钢铁男儿1 小时前
C#数组完全指南:从基础到多维数组解析
数据结构·算法
豆沙沙包?1 小时前
2025年- H82-Lc190--322.零钱兑换(动态规划)--Java版
java·算法·动态规划
Coovally AI模型快速验证2 小时前
数据集分享 | 电力检测数据集,助力AI守护电网安全
人工智能·算法·安全·计算机视觉·目标跟踪
IT古董3 小时前
【第二章:机器学习与神经网络概述】01.聚类算法理论与实践-(1)K-means聚类算法
人工智能·算法·聚类
神经星星3 小时前
【vLLM 学习】Disaggregated Prefill Lmcache
人工智能·深度学习·机器学习
小wanga3 小时前
leetcode-hot100
算法·leetcode·职场和发展