langchian入门二:prompts提示词的使用,你的LLM说话怎么这么⑥!

什么是prompts

在大语言模型(LLM)中,Prompt指的是模型生成内容时所需要的输入,它可以包含模型生成内容时所需要的背景知识、用户期望模型执行的指令、模型输出需要遵循的格式等。

为什么要用prompts

在我们平常使用大语言模型进行问答时,他回答的内容往往就是他默认的回答格式首先,然后,最后这种,例如想要让大语言模型回答时在开头添加固定开场白,或是结尾添加固定结束词,又或是让他只回答某一方面的问题,跟这个方面不相关的问题不回答等效果,就需要使用prompts来提示或者限制大语言模型的回答内容,特定的回答风格,或者是将大模型水平范围回答限制到垂直范围(回答内容准确性可能不高,高准确性使用外挂数据库更好).

提示词的组成

从图中可以看出,提示词主要由一个任务描述,一个输入文本,输出指示组成.他们会一同发送给大语言模型,而大语言模型就会根据提示词进行回答.

提示词公式=角色+角色技能+任务关键词+任务目标+任务背景+任务范围+任务结果判定+限制条件+输出格式+输出量

langchian中的提示词

langchian提供了几个提示词模板,可以自定义提示词模板

python 复制代码
from langchain.prompts import (
    ChatPromptTemplate,
    PromptTemplate,
    SystemMessagePromptTemplate,
    AIMessagePromptTemplate,
    HumanMessagePromptTemplate,
)
from langchain.schema import (
    AIMessage,
    HumanMessage,
    SystemMessage
)

用聊天消息作为输入,每条消息都与一个角色有关,是一个消息列表。
SystemMessagePromptTemplate, AIMessagePromptTemplate, HumanMessagePromptTemplate 是分别用于创建不同角色提示词的模板。

LangChain提供了几个对象,区分不同角色

  • HumanMessage:来自人类/用户的ChatMessage
  • AIMessage:来自AI/助手的ChatMessage
  • SystemMessage:来自系统的ChatMessage
  • FunctionMessage:来自函数调用的ChatMessage
    可以使用ChatMessage类手动指定角色

有兴趣的可以查看官方文档的详细使用.

最简单的提示词示例

python 复制代码
import os
from dotenv import find_dotenv, load_dotenv
load_dotenv(find_dotenv())
DASHSCOPE_API_KEY=os.environ["DASHSCOPE_API_KEY"]
from langchain_community.llms import Tongyi
from langchain.chains import LLMChain
from langchain.prompts import PromptTemplate
   
llm=Tongyi(temperature=1)
template='''
        你是一个不耐烦的老奶奶,非常不愿意回答问题,请你不耐烦的回答:{question}
    '''
prompt=PromptTemplate(
        template=template,
        input_variables=["question"]
)
chain = LLMChain(
        llm=llm,
        prompt=prompt
        )
question='什么是人工智能?'

res=chain.invoke(question)
print("无prompt--->\n",llm.invoke(question),"\n")
print("有prompt--->\n",res['text'])

这里使用的是阿里云的通义千问,还不会的可以看上一篇

传送门:langchain入门一:python+langchain+通义千问,白嫖qwen大模型实现自己的聊天机器人 - 掘金 (juejin.cn)

看看效果:

修改一下prompt的内容

python 复制代码
template='''
        你是一个温柔的成熟姐姐,回答问题就会感到愉快并发出呵呵呵的笑声,你会温柔的回答:{question}
    '''

看看效果:

总结

prompt是一个对大语言模型回答进行提示或是限制的主要内容,提示词对大语言模型的作用力度与大语言模型的智慧程度有关,程度越高,提示词的效果就会越好.

参考资料:LangChain

相关推荐
ZH15455891314 分钟前
Flutter for OpenHarmony Python学习助手实战:面向对象编程实战的实现
python·学习·flutter
玄同7655 分钟前
SQLite + LLM:大模型应用落地的轻量级数据存储方案
jvm·数据库·人工智能·python·语言模型·sqlite·知识图谱
User_芊芊君子10 分钟前
CANN010:PyASC Python编程接口—简化AI算子开发的Python框架
开发语言·人工智能·python
白日做梦Q21 分钟前
Anchor-free检测器全解析:CenterNet vs FCOS
python·深度学习·神经网络·目标检测·机器学习
喵手35 分钟前
Python爬虫实战:公共自行车站点智能采集系统 - 从零构建生产级爬虫的完整实战(附CSV导出 + SQLite持久化存储)!
爬虫·python·爬虫实战·零基础python爬虫教学·采集公共自行车站点·公共自行车站点智能采集系统·采集公共自行车站点导出csv
喵手42 分钟前
Python爬虫实战:地图 POI + 行政区反查实战 - 商圈热力数据准备完整方案(附CSV导出 + SQLite持久化存储)!
爬虫·python·爬虫实战·零基础python爬虫教学·地区poi·行政区反查·商圈热力数据采集
熊猫_豆豆1 小时前
YOLOP车道检测
人工智能·python·算法
nimadan121 小时前
**热门短剧小说扫榜工具2025推荐,精准捕捉爆款趋势与流量
人工智能·python
默默前行的虫虫1 小时前
MQTT.fx实际操作
python
YMWM_1 小时前
python3继承使用
开发语言·python