【深度学习】四种归一化方式对比:| LayerNorm,BatchNorm,InstanceNorm,GroupNorm

文章目录

  • [1 四种归一化方式对比](#1 四种归一化方式对比)
  • [2 代码实践](#2 代码实践)
    • [2.1 BatchNorm(批归一化)](#2.1 BatchNorm(批归一化))
    • [2.2 LayerNorm(层归一化)](#2.2 LayerNorm(层归一化))
    • [2.3 InstanceNorm(实例归一化)](#2.3 InstanceNorm(实例归一化))
    • [2.4 GroupNorm(组归一化)](#2.4 GroupNorm(组归一化))

归一化技术可以很好地,缓解梯度消失/爆炸问题,并有助于更快地收敛,也是一种正则化技术防止过拟合

实际中会看到好多归一化

比如BatchNorm,LayerNorm,GroupNorm,InstanceNorm

1 四种归一化方式对比

这四种归一化方法在神经网络中都有各自的应用场景和特点:

  1. BatchNorm(批归一化)

    • 应用场景:通常用于卷积神经网络(CNN)和全连接神经网络(DNN)中。
    • 工作原理:对每个特征通道在每个训练批次上进行归一化,使得均值接近0,方差接近1。
    • 优点:加速训练收敛,减少梯度消失/爆炸问题,具有轻微的正则化效果。
    • 示例 :在训练图像分类模型时,可以使用nn.BatchNorm2d对卷积层的输出进行归一化。
  2. LayerNorm(层归一化)

    • 应用场景:适用于循环神经网络(RNN)和Transformer等序列模型中。
    • 工作原理:对每个样本的每个特征通道进行归一化,使得均值接近0,方差接近1。
    • 优点:不受批量大小影响,适用于小批量大小和单个样本的情况。
    • 示例 :在Transformer的每个注意力子层后应用nn.LayerNorm对特征进行归一化。
  3. GroupNorm(组归一化)

    • 应用场景:适用于通道较少的情况,例如较小的卷积神经网络或分组卷积中。
    • 工作原理:将通道分成多个组,在每个组内对通道进行归一化,每个组有自己的均值和方差。
    • 优点:不受批量大小影响,适用于小批量大小和通道较少的情况。
    • 示例 :在较小的卷积神经网络中,可以使用nn.GroupNorm对通道进行归一化。
  4. InstanceNorm(实例归一化)

    • 应用场景:适用于风格迁移、超分辨率等需要保留样本间信息的任务中。
    • 工作原理:对每个样本的每个通道进行归一化,使得每个样本的均值接近0,方差接近1。
    • 优点:不受批量大小影响,保留了样本间的信息。
    • 示例 :在风格迁移网络中,可以使用nn.InstanceNorm2d对特征进行归一化。

综上所述,选择适当的归一化方法取决于具体的神经网络架构、任务需求和数据特征。

2 代码实践

2.1 BatchNorm(批归一化)

nn.BatchNorm2d是PyTorch中用于实现批归一化(Batch Normalization)的类,适用于二维输入,通常用于卷积神经网络(CNN)中。它将输入沿着指定的维度(通常是通道维度)进行归一化,使得每个通道的均值接近0,方差接近1。

nn.BatchNorm2d的主要参数包括:

  • num_features:输入特征的数量,通常为输入数据的通道数。
  • eps:为保证数值稳定性而添加到方差的小值。
  • momentum:用于计算 running mean 和 running variance 的动量。

下面是一个示例代码,演示了如何使用nn.BatchNorm2d对输入张量进行归一化:

python 复制代码
import torch
import torch.nn as nn

# 创建一个输入张量,大小为(batch_size, num_channels, height, width)
input_tensor = torch.randn(2, 3, 3, 3)

# 创建一个BatchNorm2d层,对每个通道进行归一化
batch_norm = nn.BatchNorm2d(3)

# 对输入张量进行归一化
output = batch_norm(input_tensor)

print(output.shape)

在这个示例中,nn.BatchNorm2d(3)表示对输入张量的每个通道进行归一化,其中3是输入张量的通道数。最终输出的形状与输入张量相同。

2.2 LayerNorm(层归一化)

nn.LayerNorm是PyTorch中用于实现层归一化(Layer Normalization)的类,适用于多维输入。与批归一化不同,层归一化是在每个样本的每个通道上进行归一化,而不是在整个批次上。这使得它更适合用于循环神经网络(RNN)等序列模型中,因为它不依赖于批次大小,并且对单个样本也有效。

nn.LayerNorm的主要参数包括:

  • normalized_shape:输入张量的形状,通常是一个整数或整数元组,表示输入张量的特征维度。
  • eps:为保证数值稳定性而添加到方差的小值。

下面是一个示例代码,演示了如何使用nn.LayerNorm对输入张量进行归一化:

python 复制代码
import torch
import torch.nn as nn

# 创建一个输入张量,大小为(batch_size, num_channels, height, width)
input_tensor = torch.randn(2, 3, 3, 3)

# 创建一个LayerNorm层,对每个样本的每个通道进行归一化
layer_norm = nn.LayerNorm([3, 3, 3])

# 对输入张量进行归一化
output = layer_norm(input_tensor)

print(output.shape)

在这个示例中,nn.LayerNorm([3, 3, 3])表示对输入张量的每个样本的每个通道进行归一化,其中[3, 3, 3]是输入张量的特征维度。最终输出的形状与输入张量相同。

2.3 InstanceNorm(实例归一化)

nn.InstanceNorm2d是PyTorch中用于实现实例归一化(Instance Normalization)的类,适用于二维输入,通常用于风格迁移、超分辨率等需要保留样本间信息的任务中。与批归一化不同,实例归一化在每个样本的每个通道上进行归一化,而不是在整个批次上。这使得它更适合保留样本间的信息,并且不依赖于批次大小。

nn.InstanceNorm2d的主要参数包括:

  • num_features:输入特征的数量,通常为输入数据的通道数。
  • eps:为保证数值稳定性而添加到方差的小值。

下面是一个示例代码,演示了如何使用nn.InstanceNorm2d对输入张量进行归一化:

python 复制代码
import torch
import torch.nn as nn

# 创建一个输入张量,大小为(batch_size, num_channels, height, width)
input_tensor = torch.randn(2, 3, 3, 3)

# 创建一个InstanceNorm2d层,对每个样本的每个通道进行独立的归一化
instance_norm = nn.InstanceNorm2d(3)

# 对输入张量进行归一化
output = instance_norm(input_tensor)

print(output.shape)

在这个示例中,nn.InstanceNorm2d(3)表示对输入张量的每个样本的每个通道进行独立的归一化,其中3是输入张量的通道数。最终输出的形状与输入张量相同。

2.4 GroupNorm(组归一化)

torch.nn.GroupNorm是PyTorch中的一个归一化层,用于在神经网络中标准化输入。与torch.nn.BatchNorm(批标准化)不同,GroupNorm将输入分成多个组,并在每个组内进行标准化。这种归一化方法在小批量大小下也能保持性能,并且对于通道数较少的情况更有效。以下是GroupNorm的主要特点和参数:

  • num_groups(int):将输入通道分成多少组。每个组内的通道会被一起归一化。
  • num_channels(int):输入张量的通道数。
  • eps(float):用于数值稳定性的epsilon值,避免除以零的情况。

当分组数和通道数相同的时候,相当于调用InstanceNorm

当分组数为1的时候,相当于调用LayerNorm

python 复制代码
input = torch.randn(20, 6, 10, 10)
# 6个通道分为3个
m = nn.GroupNorm(3, 6)
#6个通道分为3个 (等价于InstanceNorm)
m = nn.GroupNorm(6, 6)
# 6个通道分为1个 (等价于LayerNorm)
m = nn.GroupNorm(1, 6)
output = m(input)

使用示例:

python 复制代码
import torch
import torch.nn as nn

# 创建一个输入张量,大小为(batch_size, num_channels, height, width)
input_tensor = torch.randn(2, 6, 3, 3)

# 创建一个GroupNorm层,将通道分成2组
group_norm = nn.GroupNorm(2, 6)

# 对输入张量进行标准化
output = group_norm(input_tensor)

print(output.shape)

在上面的示例中,GroupNorm层将输入张量的通道分成了2组,然后在每个组内进行标准化。

相关推荐
艾派森1 分钟前
大数据分析案例-基于随机森林算法的智能手机价格预测模型
人工智能·python·随机森林·机器学习·数据挖掘
hairenjing11233 分钟前
在 Android 手机上从SD 卡恢复数据的 6 个有效应用程序
android·人工智能·windows·macos·智能手机
小蜗子8 分钟前
Multi‐modal knowledge graph inference via media convergenceand logic rule
人工智能·知识图谱
SpikeKing20 分钟前
LLM - 使用 LLaMA-Factory 微调大模型 环境配置与训练推理 教程 (1)
人工智能·llm·大语言模型·llama·环境配置·llamafactory·训练框架
黄焖鸡能干四碗1 小时前
信息化运维方案,实施方案,开发方案,信息中心安全运维资料(软件资料word)
大数据·人工智能·软件需求·设计规范·规格说明书
1 小时前
开源竞争-数据驱动成长-11/05-大专生的思考
人工智能·笔记·学习·算法·机器学习
ctrey_1 小时前
2024-11-4 学习人工智能的Day21 openCV(3)
人工智能·opencv·学习
攻城狮_Dream1 小时前
“探索未来医疗:生成式人工智能在医疗领域的革命性应用“
人工智能·设计·医疗·毕业
学习前端的小z2 小时前
【AIGC】如何通过ChatGPT轻松制作个性化GPTs应用
人工智能·chatgpt·aigc
埃菲尔铁塔_CV算法2 小时前
人工智能图像算法:开启视觉新时代的钥匙
人工智能·算法