Django性能优化

1.服务器CPU太高的优化

在Django项目中使用`line_profiler`进行性能剖析,您需要遵循以下步骤来设置并使用它:

注:此种方式似乎中间件无法启动!!!

复制代码
要使用Django与`line_profiler`进行特定视图的性能测试,你需要按照以下步骤操作:

1. **安装line_profiler**:
   在命令行中使用pip安装`line_profiler`。
   ```bash
   pip install line_profiler
   ```

2. **配置你的视图**:
   在你的Django视图中,添加一个`@profile`装饰器来标记你想要剖析的视图。
   ```python
   @profile
   def my_view(request):
       # 你的视图逻辑
       return HttpResponse('Hello World!')
   ```
   注意:`@profile`装饰器在实际运行时不存在。你可以在本地定义它为一个空装饰器,以避免运行时错误,或者只在运行`line_profiler`时才添加该装饰器。

3. **创建一个剖析命令**:
   你需要创建一个自定义的Django管理命令来运行`line_profiler`。在你的应用目录中,创建一个`management/commands`子目录,并在其中创建一个命令文件,例如`profile.py`。

    ```python
    # myapp/management/commands/profile.py
    from django.core.management.base import BaseCommand
    from line_profiler import LineProfiler
    
    class Command(BaseCommand):
        help = 'Run line profiler on specific view function'

        def handle(self, *args, **options):
            # 这里根据需要调用你的视图或者从urls.py导入URL配置
            from my_app.views import my_view 
            profiler = LineProfiler()
            profiled_view = profiler(my_view)

            # 你可以模拟一个请求对象,或者从测试数据中获取
            request = create_request_somehow()

            # 运行被剖析的视图函数
            profiled_view(request)
            
            # 输出剖析结果
            profiler.print_stats()
    ```

4. **运行你的剖析命令**:
   在你的Django项目目录中使用manage.py运行刚才创建的命令。
   ```bash
   python manage.py profile
   ```

5. **分析剖析结果**:
   查看命令行输出的剖析结果。`line_profiler`会列出每一行代码的执行时间和次数等信息,这样你就可以找到性能瓶颈。

确保在部署到生产环境前移除`@profile`装饰器或更改相应的配置,以免引入额外的性能开销。使用`line_profiler`来进行性能剖析是一个非常有力的工具,它可以帮助你理解Django视图中每一行代码的性能表现。

line_profiler跑完结果如下:

Line # Hits Time Per Hit % Time Line Contents

==============================================================

53 def wrapped_view(*args, **kwargs):

54 1 1e+10 1e+10 100.0 return view_func(*args, **kwargs)

相关推荐
Kier13 小时前
基于YOLO实现一个智能条码识别
人工智能·python·ai编程
MarkGosling13 小时前
【语音合成】B 站开源 IndexTTS :声音克隆,吊打真人发音,断句精准度 98%
人工智能·python
alicelovesu13 小时前
Mac开发者噩梦终结者?实测三大工具,告别环境配置地狱!
python·node.js
站大爷IP16 小时前
Pandas时间数据处理:从基础到进阶的实战指南
python
智能砖头16 小时前
本地文档AI助手:基于LangChain和Qwen2.5的智能问答系统
人工智能·python
郭枫寅17 小时前
第二课 Python 注释与规范格式
python
郭枫寅17 小时前
第三课 Python中的简单数据类型
python
郭枫寅18 小时前
第四课 Python基础语法(一)
python
JavaEdge在掘金18 小时前
解决 Maven os.detected.classifier 报错:快速修复指南
python
HEY_FLYINGPIG20 小时前
【FLASK】FLASK应用中的多用户并行登录与加密
后端·python·flask