第一章 深度学习发展概述

一、学习目标

1.了解深度学习的发展历程

2.认识深度学习的基本概念和算法

3.学习深度学习的主要应用

二、深度学习的发展

发展一图:

其中,最主要的节点为:

M-P模型:其模拟了一个神经元的工作过程;

Hopfield模型:最初的卷积神经网络;

反向传播算法:解决了线性不可分问题,使得模型能够收敛。

RNN和LSTM:NLP上的两大重要模型。

Transformer:提出注意力机制,相当于在RNN类的模型中加入了卷积因素,为大模型提供了基础。

ChatGPT:现象级的语言大模型。

三、深度学习基本概念

1.三者概念

人工智能是指所有的人工技术制造出来的智能体。

机器学习是其中一种实现的技术,其特点在于让机器从数据中寻找规律和特征,然后使用规律对未知数据进行预测。

深度学习则是机器学习中的一种方法,其特点在于模拟人的神经结构设计了神经网络来进行学习。

2.经典算法与网络

四、应用

主要的应用有:视觉类、语音类、语言类、多模态。

1.视觉类

基础任务:

高级任务:

2.语音类
3.语言类

4.多模态类

五、总结

了解深度学习的历史、著名算法结构、应用。

相关推荐
喵~来学编程啦24 分钟前
【论文精读】LPT: Long-tailed prompt tuning for image classification
人工智能·深度学习·机器学习·计算机视觉·论文笔记
深圳市青牛科技实业有限公司37 分钟前
【青牛科技】应用方案|D2587A高压大电流DC-DC
人工智能·科技·单片机·嵌入式硬件·机器人·安防监控
水豚AI课代表1 小时前
分析报告、调研报告、工作方案等的提示词
大数据·人工智能·学习·chatgpt·aigc
几两春秋梦_1 小时前
符号回归概念
人工智能·数据挖掘·回归
用户691581141652 小时前
Ascend Extension for PyTorch的源码解析
人工智能
用户691581141652 小时前
Ascend C的编程模型
人工智能
-Nemophilist-2 小时前
机器学习与深度学习-1-线性回归从零开始实现
深度学习·机器学习·线性回归
成富3 小时前
文本转SQL(Text-to-SQL),场景介绍与 Spring AI 实现
数据库·人工智能·sql·spring·oracle
CSDN云计算3 小时前
如何以开源加速AI企业落地,红帽带来新解法
人工智能·开源·openshift·红帽·instructlab
艾派森3 小时前
大数据分析案例-基于随机森林算法的智能手机价格预测模型
人工智能·python·随机森林·机器学习·数据挖掘