第一章 深度学习发展概述

一、学习目标

1.了解深度学习的发展历程

2.认识深度学习的基本概念和算法

3.学习深度学习的主要应用

二、深度学习的发展

发展一图:

其中,最主要的节点为:

M-P模型:其模拟了一个神经元的工作过程;

Hopfield模型:最初的卷积神经网络;

反向传播算法:解决了线性不可分问题,使得模型能够收敛。

RNN和LSTM:NLP上的两大重要模型。

Transformer:提出注意力机制,相当于在RNN类的模型中加入了卷积因素,为大模型提供了基础。

ChatGPT:现象级的语言大模型。

三、深度学习基本概念

1.三者概念

人工智能是指所有的人工技术制造出来的智能体。

机器学习是其中一种实现的技术,其特点在于让机器从数据中寻找规律和特征,然后使用规律对未知数据进行预测。

深度学习则是机器学习中的一种方法,其特点在于模拟人的神经结构设计了神经网络来进行学习。

2.经典算法与网络

四、应用

主要的应用有:视觉类、语音类、语言类、多模态。

1.视觉类

基础任务:

高级任务:

2.语音类
3.语言类

4.多模态类

五、总结

了解深度学习的历史、著名算法结构、应用。

相关推荐
MidJourney中文版30 分钟前
深度报告:中老年AI陪伴机器人需求分析
人工智能·机器人
王上上1 小时前
【论文阅读41】-LSTM-PINN预测人口
论文阅读·人工智能·lstm
智慧化智能化数字化方案1 小时前
69页全面预算管理体系的框架与落地【附全文阅读】
大数据·人工智能·全面预算管理·智慧财务·智慧预算
PyAIExplorer1 小时前
图像旋转:从原理到 OpenCV 实践
人工智能·opencv·计算机视觉
Wilber的技术分享1 小时前
【机器学习实战笔记 14】集成学习:XGBoost算法(一) 原理简介与快速应用
人工智能·笔记·算法·随机森林·机器学习·集成学习·xgboost
19891 小时前
【零基础学AI】第26讲:循环神经网络(RNN)与LSTM - 文本生成
人工智能·python·rnn·神经网络·机器学习·tensorflow·lstm
burg_xun2 小时前
【Vibe Coding 实战】我如何用 AI 把一张草图变成了能跑的应用
人工智能
酌沧2 小时前
AI做美观PPT:3步流程+工具测评+避坑指南
人工智能·powerpoint
狂师2 小时前
啥是AI Agent!2025年值得推荐入坑AI Agent的五大工具框架!(新手科普篇)
人工智能·后端·程序员
星辰大海的精灵2 小时前
使用Docker和Kubernetes部署机器学习模型
人工智能·后端·架构