【智能算法】白鲨算法(AVOA)原理及实现

目录


1.背景

2022年,Braik 等人受到白鲨捕食行为启发,提出了非洲秃鹫优化算法(White Shark Optimizer, WSO)。

2.算法原理

2.1算法思想

海洋中白鲨拥有敏锐的感知、听觉和嗅觉,WSO模拟了白鲨探索整个搜索空间来追踪、定位和捕获猎物,并通过白鲨位置的不断更新来达到求解优化问题。

2.2算法过程

速度更新 :

这里很像PSO更新方式,作者对控制参数进行了更为复杂的设置。
v k + 1 i = μ [ v k i + p 1 ( w gbest k − w k i ) × c 1 + p 2 ( w best v k i − w k i ) × c 2 ] v_{k+1}^i=\mu\left[v_k^i+p_1\right.\left(w_{\text{gbest }k}-w_k^i\right)\times c_1+\left.p_2\left(w{\text{best}}^{v_k^i}-w_k^i\right)\times c_2\right] vk+1i=μ[vki+p1(wgbest k−wki)×c1+p2(wbestvki−wki)×c2]

其中,参数 p 1 , p 2 p_1,p_2 p1,p2表述如下:
p 1 = p m a x + ( p m a x − p m i n ) × e − ( 4 k / K ) 2 p 2 = p m i n + ( p m a x − p m i n ) × e − ( 4 k / K ) 2 \begin{aligned}p_1&=p_{max}+(p_{max}-p_{min})\times e^{-(4k/K)^2}\\p_2&=p_{min}+(p_{max}-p_{min})\times e^{-(4k/K)^2}\end{aligned} p1p2=pmax+(pmax−pmin)×e−(4k/K)2=pmin+(pmax−pmin)×e−(4k/K)2
位置更新

大白鲨常常在不断寻找潜在猎物,可能位于最佳或次优位置。它们会通过听到猎物移动引起的波浪声或闻到猎物的气味来确定位置。
w k + 1 i = { w k i ⋅ ¬ ⊕ w o + u ⋅ a + l ⋅ b R < m v w k i + v k i / f R ⩾ m v \left.w_{k+1}^i=\left\{\begin{array}{cc}w_k^i\cdot\neg\oplus w_o+u\cdot a+l\cdot b&R<m_v\\w_k^i+v_k^i/f&R\geqslant m_v\end{array}\right.\right. wk+1i={wki⋅¬⊕wo+u⋅a+l⋅bwki+vki/fR<mvR⩾mv

其中, ¬ , ⊕ \lnot, \oplus ¬,⊕分别为否定运算和异或运算。其余参数表述为:
a = s g n ( w k i − u ) > 0 b = sgn ⁡ ( w k i − l ) < 0 w o = ⊕ ( a , b ) a=\mathrm{sgn}(w_{k}^{i}-u)>0 \\ b=\operatorname{sgn}(w_k^i-l)<0 \\ w_o=\oplus(a,b) a=sgn(wki−u)>0b=sgn(wki−l)<0wo=⊕(a,b)
向猎物移动
w k + 1 i = w g best k + r 1 D ⃗ w sgn ( r 2 − 0.5 ) r 3 < s s w_{k+1}^i=w_{g\text{best}k}+r_1\vec{D}w\text{sgn}(r_2-0.5)\quad r_3<s_s wk+1i=wgbestk+r1D wsgn(r2−0.5)r3<ss
最优解保留
w k + 1 i = w k i + w k + 1 i 2 × R w
{k+1}^i=\frac{w_k^i+w
{k+1}^i}{2\times R} wk+1i=2×Rwki+wk+1i
伪代码

3.代码实现

matlab 复制代码
% 白鲨优化算法
function [Best_pos, Best_fitness, Iter_curve, History_pos, History_best] = WSO(pop, maxIter, lb, ub, dim,fobj)
%input
%pop 种群数量
%dim 问题维数
%ub 变量上边界
%lb 变量下边界
%fobj 适应度函数
%maxIter 最大迭代次数
%output
%Best_pos 最优位置
%Best_fitness 最优适应度值
%Iter_curve 每代最优适应度值
%History_pos 每代种群位置
%History_best 每代最优个体位置
%% Convergence curve
Iter_curve=zeros(1,maxIter);
%% 初始化
WSO_Positions = zeros(pop, dim);
for i = 1:pop
    for j = 1:dim
        WSO_Positions(i,j) = (ub(j) - lb(j)) * rand() + lb(j);
    end
end
% initial velocity
v=0.0*WSO_Positions; 
%% 计算适应度
fit=zeros(pop,1);
for i=1:pop
     fit(i,1)=fobj(WSO_Positions(i,:));
end

%% 记录
fitness=fit; % Initial fitness of the random positions of the WSO
[Best_fitness,index]=min(fit);

wbest = WSO_Positions; % Best position initialization
Best_pos = WSO_Positions(index,:); % initial global position

%% WSO Parameters
    fmax=0.75; %  Maximum frequency of the wavy motion
    fmin=0.07; %  Minimum frequency of the wavy motion   
    tau=4.11;  
       
    mu=2/abs(2-tau-sqrt(tau^2-4*tau));

    pmin=0.5;
    pmax=1.5;
    a0=6.250;  
    a1=100;
    a2=0.0005;
%% 迭代 
for ite=1:maxIter

    mv=1/(a0+exp((maxIter/2.0-ite)/a1)); 
    s_s=abs((1-exp(-a2*ite/maxIter))) ;
 
    p1=pmax+(pmax-pmin)*exp(-(4*ite/maxIter)^2);
    p2=pmin+(pmax-pmin)*exp(-(4*ite/maxIter)^2);
    
 %% Update the speed of the white sharks in water  
     nu=floor((pop).*rand(1,pop))+1;

     for i=1:size(WSO_Positions,1)
           rmin=1; rmax=3.0;
          rr=rmin+rand()*(rmax-rmin);
          wr=abs(((2*rand()) - (1*rand()+rand()))/rr);       
          v(i,:)=  mu*v(i,:) +  wr *(wbest(nu(i),:)-WSO_Positions(i,:));
           %% or                

%          v(i,:)=  mu*(v(i,:)+ p1*(gbest-WSO_Positions(i,:))*rand+.... 
%                    + p2*(wbest(nu(i),:)-WSO_Positions(i,:))*rand);          
     end
 
 %% Update the white shark position
     for i=1:size(WSO_Positions,1)
       
        f =fmin+(fmax-fmin)/(fmax+fmin);
         
        a=sign(WSO_Positions(i,:)-ub)>0;
        b=sign(WSO_Positions(i,:)-lb)<0;
         
        wo=xor(a,b);

        % locate the prey based on its sensing (sound, waves)
            if rand<mv
                WSO_Positions(i,:)=  WSO_Positions(i,:).*(~wo) + (ub.*a+lb.*b); % random allocation  
            else   
                WSO_Positions(i,:) = WSO_Positions(i,:)+ v(i,:)/f;  % based on the wavy motion
            end
    end 
    
    %% Update the position of white sharks consides_sng fishing school 
for i=1:size(WSO_Positions,1)
        for j=1:size(WSO_Positions,2)
            if rand<s_s      
                
             Dist=abs(rand*(Best_pos(j)-1*WSO_Positions(i,j)));
             
                if(i==1)
                    WSO_Positions(i,j)=Best_pos(j)+rand*Dist*sign(rand-0.5);
                else    
                    WSO_Pos(i,j)= Best_pos(j)+rand*Dist*sign(rand-0.5);
                    WSO_Positions(i,j)=(WSO_Pos(i,j)+WSO_Positions(i-1,j))/2*rand;
                end   
            end
         
        end       
end
%     

%% Update global, best and new positions
 
    for i=1:pop 
        % Handling boundary violations
           if WSO_Positions(i,:)>=lb & WSO_Positions(i,:)<=ub%         
            % Find the fitness
              fit(i)=fobj(WSO_Positions(i,:));    
              
             % Evaluate the fitness
            if fit(i)<fitness(i)
                 wbest(i,:) = WSO_Positions(i,:); % Update the best positions
                 fitness(i)=fit(i);   % Update the fitness
            end
            
            %% Finding out the best positions
            if (fitness(i)<Best_fitness)
               Best_fitness=fitness(i);
               Best_pos = wbest(index,:); % Update the global best positions
            end 
            
        end
    end
    Iter_curve(ite) = Best_fitness;
    History_pos{ite} = WSO_Positions;
    History_best{ite} = Best_pos;
end 
end

4.参考文献

[1] Braik M, Hammouri A, Atwan J, et al. White Shark Optimizer: A novel bio-inspired meta-heuristic algorithm for global optimization problems[J]. Knowledge-Based Systems, 2022, 243: 108457.

相关推荐
Coovally AI模型快速验证35 分钟前
MMYOLO:打破单一模式限制,多模态目标检测的革命性突破!
人工智能·算法·yolo·目标检测·机器学习·计算机视觉·目标跟踪
可为测控1 小时前
图像处理基础(4):高斯滤波器详解
人工智能·算法·计算机视觉
Milk夜雨2 小时前
头歌实训作业 算法设计与分析-贪心算法(第3关:活动安排问题)
算法·贪心算法
BoBoo文睡不醒2 小时前
动态规划(DP)(细致讲解+例题分析)
算法·动态规划
apz_end3 小时前
埃氏算法C++实现: 快速输出质数( 素数 )
开发语言·c++·算法·埃氏算法
仟濹3 小时前
【贪心算法】洛谷P1106 - 删数问题
c语言·c++·算法·贪心算法
CM莫问4 小时前
python实战(十五)——中文手写体数字图像CNN分类
人工智能·python·深度学习·算法·cnn·图像分类·手写体识别
sz66cm4 小时前
LeetCode刷题 -- 45.跳跃游戏 II
算法·leetcode
Amor风信子4 小时前
华为OD机试真题---战场索敌
java·开发语言·算法·华为od·华为
old_power5 小时前
【PCL】Segmentation 模块—— 基于图割算法的点云分割(Min-Cut Based Segmentation)
c++·算法·计算机视觉·3d