【论文阅读】

4. Analysis of Large-Scale Multi-Tenant GPU Clusters for DNN Training Workloads
  • 出处:2019 USENIX-TAC 大规模多租户GPU集群对DNN训练工作负载的分析

  • 主要工作:描述了Microsoft中一个多租户GPU集群两个月的工作负载特征,研究影响多租户集群上DNN训练工作负载的集群利用率的三个问题:

    • 队列调度和局部性约束对队列的影响。
    • 局部性对GPU利用率的影响。
    • 训练期间的故障问题。
  • 介绍GPU集群Philly:

① 传入作业和排队:用户可指定GPU数量,调度器跟踪集群中所有空闲GPU,调度时首先考虑机架,然后考虑机架中可用GPU最多的服务器。

②作业放置和利用:将小作业打包到更少的服务器中来避免资源碎片。一旦作业被安排运行,它的GPU就不会与其他作业共享。

③训练进度和完成情况:有三种可能情况:passed:已完成;killed:被用户终止;unsuccessful:不成功。

  • 工具:Apache-Yarn, 是一种新的Hadoop资源管理器,是一个通用资源管理系统 和调度平台,可以为上层应用提供统一的资源管理和调度。
  • 展望:
    • 局部性优先:缺乏局部性会影响利用率和作业运行时间。等待有限的时间来查看是否可以实现局部性,如果不能,则使用局部性宽松的可用资源来调度作业( 从而减少用户的排队时间)。
    • 减轻干扰:将不同小作业放在专用服务器上,而不是打包到单个服务器,从而减少这些作业之间的干扰,但会增加碎片化。所以要支持作业迁移以对集群进行碎片整理。
    • 改进故障处理:大量作业失败是由于代码或配置中的用户错误造成,语法检查可以放置许多错误,并且可以通过运行训练的第一次迭代来捕获一些运行时错误。
相关推荐
产品设计大观14 分钟前
6个宠物APP原型设计案例拆解:含AI问诊、商城、领养、托运
大数据·人工智能·ai·宠物·墨刀·app原型·宠物app
Codebee16 分钟前
Ooder全栈框架:AI理解业务的多字段表单智能布局技术实现
人工智能
weilaikeqi111117 分钟前
汪喵灵灵荣获“兴智杯”全国AI创新应用大赛一等奖,彰显AI宠物医疗硬实力
人工智能·百度·宠物
aliprice17 分钟前
Target电商平台研究指南:十款实用工具助力全渠道零售与品牌营销分析
人工智能·零售
yiersansiwu123d18 分钟前
多模态突破:AI规模化应用的关键密码
人工智能
renhongxia122 分钟前
面向图像处理逆问题的扩散模型研究综述
图像处理·人工智能
古城小栈31 分钟前
代理人工智能(Agent AI):NVIDIA Project GR00T 实战
人工智能
Coder_Boy_32 分钟前
Java+Proteus仿真Arduino控制LED问题排查全记录(含交互过程)
java·人工智能·python
小程故事多_8034 分钟前
RAG终将被取代?长上下文、Agent记忆与Text2SQL的技术博弈
人工智能·aigc
厚德云1 小时前
全球首款填空式AI绘画提示词工具PromptFill正式发布
人工智能·ai作画·云计算·aigc·ai绘画