【论文阅读】

4. Analysis of Large-Scale Multi-Tenant GPU Clusters for DNN Training Workloads
  • 出处:2019 USENIX-TAC 大规模多租户GPU集群对DNN训练工作负载的分析

  • 主要工作:描述了Microsoft中一个多租户GPU集群两个月的工作负载特征,研究影响多租户集群上DNN训练工作负载的集群利用率的三个问题:

    • 队列调度和局部性约束对队列的影响。
    • 局部性对GPU利用率的影响。
    • 训练期间的故障问题。
  • 介绍GPU集群Philly:

① 传入作业和排队:用户可指定GPU数量,调度器跟踪集群中所有空闲GPU,调度时首先考虑机架,然后考虑机架中可用GPU最多的服务器。

②作业放置和利用:将小作业打包到更少的服务器中来避免资源碎片。一旦作业被安排运行,它的GPU就不会与其他作业共享。

③训练进度和完成情况:有三种可能情况:passed:已完成;killed:被用户终止;unsuccessful:不成功。

  • 工具:Apache-Yarn, 是一种新的Hadoop资源管理器,是一个通用资源管理系统 和调度平台,可以为上层应用提供统一的资源管理和调度。
  • 展望:
    • 局部性优先:缺乏局部性会影响利用率和作业运行时间。等待有限的时间来查看是否可以实现局部性,如果不能,则使用局部性宽松的可用资源来调度作业( 从而减少用户的排队时间)。
    • 减轻干扰:将不同小作业放在专用服务器上,而不是打包到单个服务器,从而减少这些作业之间的干扰,但会增加碎片化。所以要支持作业迁移以对集群进行碎片整理。
    • 改进故障处理:大量作业失败是由于代码或配置中的用户错误造成,语法检查可以放置许多错误,并且可以通过运行训练的第一次迭代来捕获一些运行时错误。
相关推荐
好奇龙猫11 分钟前
【AI学习-comfyUI学习-三十二节-FLXU原生态反推+controlnet depth(UNion)工作流-各个部分学习】
人工智能·学习
peixiuhui40 分钟前
EdgeGateway 快速开始手册-表达式 Modbus 报文格式
人工智能·mqtt·边缘计算·iot·modbus tcp·iotgateway·modbus rtu
bing.shao1 小时前
golang 做AI任务执行
开发语言·人工智能·golang
鼎道开发者联盟2 小时前
2025中国AI开源生态报告发布,鼎道智联助力产业高质量发展
人工智能·开源·gui
贾维思基2 小时前
告别RPA和脚本!视觉推理Agent,下一代自动化的暴力解法
人工智能·agent
P-ShineBeam2 小时前
引导式问答-对话式商品搜索-TRACER
人工智能·语言模型·自然语言处理·知识图谱
j_jiajia2 小时前
(一)人工智能算法之监督学习——KNN
人工智能·学习·算法
Hcoco_me2 小时前
大模型面试题62:PD分离
人工智能·深度学习·机器学习·chatgpt·机器人
OpenCSG2 小时前
AgenticOps 如何重构企业 AI 的全生命周期管理体系
大数据·人工智能·深度学习