【论文阅读】

4. Analysis of Large-Scale Multi-Tenant GPU Clusters for DNN Training Workloads
  • 出处:2019 USENIX-TAC 大规模多租户GPU集群对DNN训练工作负载的分析

  • 主要工作:描述了Microsoft中一个多租户GPU集群两个月的工作负载特征,研究影响多租户集群上DNN训练工作负载的集群利用率的三个问题:

    • 队列调度和局部性约束对队列的影响。
    • 局部性对GPU利用率的影响。
    • 训练期间的故障问题。
  • 介绍GPU集群Philly:

① 传入作业和排队:用户可指定GPU数量,调度器跟踪集群中所有空闲GPU,调度时首先考虑机架,然后考虑机架中可用GPU最多的服务器。

②作业放置和利用:将小作业打包到更少的服务器中来避免资源碎片。一旦作业被安排运行,它的GPU就不会与其他作业共享。

③训练进度和完成情况:有三种可能情况:passed:已完成;killed:被用户终止;unsuccessful:不成功。

  • 工具:Apache-Yarn, 是一种新的Hadoop资源管理器,是一个通用资源管理系统 和调度平台,可以为上层应用提供统一的资源管理和调度。
  • 展望:
    • 局部性优先:缺乏局部性会影响利用率和作业运行时间。等待有限的时间来查看是否可以实现局部性,如果不能,则使用局部性宽松的可用资源来调度作业( 从而减少用户的排队时间)。
    • 减轻干扰:将不同小作业放在专用服务器上,而不是打包到单个服务器,从而减少这些作业之间的干扰,但会增加碎片化。所以要支持作业迁移以对集群进行碎片整理。
    • 改进故障处理:大量作业失败是由于代码或配置中的用户错误造成,语法检查可以放置许多错误,并且可以通过运行训练的第一次迭代来捕获一些运行时错误。
相关推荐
The Straggling Crow1 天前
理解训练 vs 推理时对计算图、内存、精度的不同要求
人工智能
阿杰学AI1 天前
AI核心知识33——大语言模型之ASR(简洁且通俗易懂版)
人工智能·ai·语言模型·自然语言处理·语音识别·asr·自动语音识别
安徽正LU o561-6o623o71 天前
(露)转棒疲劳仪 大鼠转棒疲劳仪 小鼠转棒疲劳仪
人工智能
北京耐用通信1 天前
工业通信升级利器:耐达讯自动化Ethernet/IP转CC-Link网关让IO模块兼容无忧!
网络·人工智能·科技·物联网·网络协议·自动化·信息与通信
用户2462932067671 天前
标书智能体(三)——生成标书正文代码+提示词
人工智能
凌晨一点的秃头猪1 天前
SIFT尺度不变特征变换
人工智能·计算机视觉
JEECG低代码平台1 天前
Jeecg AI 应用开发平台 v1.0.0,首个开源版本发布
人工智能·开源
强化学习与机器人控制仿真1 天前
Holosoma 开源人形机器人强化学习训练部署框架
人工智能·stm32·神经网络·机器人·强化学习·具身智能·人形机器人
金融小师妹1 天前
机器学习驱动分析:ADP就业数据异常波动,AI模型预测12月降息概率达89%
大数据·人工智能·深度学习·编辑器·1024程序员节
智慧化智能化数字化方案1 天前
ERP规划——解读86页大型企业业务流程优化及ERP整体规划方案【附全文阅读】
大数据·人工智能·erp整体规划方案·erp实施项目建设方案·erp基本概念培训