【论文阅读】

4. Analysis of Large-Scale Multi-Tenant GPU Clusters for DNN Training Workloads
  • 出处:2019 USENIX-TAC 大规模多租户GPU集群对DNN训练工作负载的分析

  • 主要工作:描述了Microsoft中一个多租户GPU集群两个月的工作负载特征,研究影响多租户集群上DNN训练工作负载的集群利用率的三个问题:

    • 队列调度和局部性约束对队列的影响。
    • 局部性对GPU利用率的影响。
    • 训练期间的故障问题。
  • 介绍GPU集群Philly:

① 传入作业和排队:用户可指定GPU数量,调度器跟踪集群中所有空闲GPU,调度时首先考虑机架,然后考虑机架中可用GPU最多的服务器。

②作业放置和利用:将小作业打包到更少的服务器中来避免资源碎片。一旦作业被安排运行,它的GPU就不会与其他作业共享。

③训练进度和完成情况:有三种可能情况:passed:已完成;killed:被用户终止;unsuccessful:不成功。

  • 工具:Apache-Yarn, 是一种新的Hadoop资源管理器,是一个通用资源管理系统 和调度平台,可以为上层应用提供统一的资源管理和调度。
  • 展望:
    • 局部性优先:缺乏局部性会影响利用率和作业运行时间。等待有限的时间来查看是否可以实现局部性,如果不能,则使用局部性宽松的可用资源来调度作业( 从而减少用户的排队时间)。
    • 减轻干扰:将不同小作业放在专用服务器上,而不是打包到单个服务器,从而减少这些作业之间的干扰,但会增加碎片化。所以要支持作业迁移以对集群进行碎片整理。
    • 改进故障处理:大量作业失败是由于代码或配置中的用户错误造成,语法检查可以放置许多错误,并且可以通过运行训练的第一次迭代来捕获一些运行时错误。
相关推荐
min1811234561 分钟前
因果推理在机器学习中的集成路径
人工智能
小鸡吃米…6 分钟前
机器学习——生态系统
人工智能·机器学习
说私域13 分钟前
基于开源AI大模型、AI智能名片与商城小程序的购物中心“人货场车”全面数字化解决方案研究
人工智能·小程序·开源
丝斯201114 分钟前
AI学习笔记整理(38)——自然语言处理的‌基于深度学习的语言模型
人工智能·学习·自然语言处理
小毅&Nora16 分钟前
【人工智能】【大模型】大语言模型最新进展:2025年技术演进与实用指南
人工智能·语言模型·自然语言处理
Codebee16 分钟前
惊了!ooder-org藏提示词彩蛋|AI驱动工程典范,1小时焕新DSM全靠A2UI
人工智能·编程语言·全栈
Coder_Boy_19 分钟前
基于SpringAI的智能平台基座开发-(二)
java·人工智能·springboot·aiops·langchain4j
编码小哥20 分钟前
OpenCV轮廓检测与绘制实战
人工智能·opencv·计算机视觉
许泽宇的技术分享27 分钟前
当AI开始“画“界面:A2UI协议如何让.NET应用告别写死的UI
人工智能·ui·.net·blazor·a2ui