医学数据分析中缺失值的处理方法

医学数据分析中缺失值的处理方法

为了更好的展示,在和鲸社区使用代码进行展示

医学数据分析中,缺失值是不可避免的问题。缺失值的存在会影响数据的完整性和准确性,进而影响分析结果的可靠性。因此,在进行医学数据分析之前,需要对缺失值进行处理。

处理缺失值的方法主要有两种:删除和插补。

1. 删除

删除法是处理缺失值最简单的方法,也是最安全的方法,其基本思想是将包含缺失值的样本或指标直接删除。

删除法的优点是简单易行,不会引入额外的误差。缺点是可能会导致数据量减少,降低分析的准确性。

2. 插补

插补法是通过一定的统计方法,对缺失值进行估计和填补。

插补法的优点是可以保留所有样本和指标,提高数据完整性。缺点是可能会引入额外的误差,影响分析结果的可靠性,再高级的插补也不是真是的数据。

我认为比较合理的方法?

第一步:进行预分析

首先,可以进行两种极端情况的预分析:

  • 将所有缺失值删除,观察分析结果是否发生明显变化。
  • 将所有缺失值进行插补,观察分析结果是否发生明显变化。

通过预分析,可以找出对分析结果影响较大的关键指标。对于关键指标中的缺失值,建议直接删除。

第二步:观察缺失值情况

对于非关键指标,可以观察其缺失值的数量和分布情况。如果缺失值的数量较多,或者分布不均匀,则建议将该指标删除。

第三步:对剩余指标进行插补

对于缺失值较少的指标,可以进行插补。常用的插补方法包括:

  • 均值插补:用该指标的平均值填补缺失值。
  • 中位数插补:用该指标的中位数填补缺失值。
  • 热卡插补:用与该样本相似的样本的平均值填补缺失值。
  • 回归插补:根据其他指标建立回归模型,预测缺失值。

总结

缺失值的处理是一个复杂的问题,需要根据具体情况选择合适的方法。一般来说,可以按照以下步骤进行处理:

  1. 进行预分析,找出关键指标。
  2. 观察缺失值情况,删除缺失值较多的指标。
  3. 对剩余指标进行插补。

通过以上步骤,一方面保证关键数据的可靠性,另一方面保证了分析的样本量,从而尽可能减少缺失值对分析结果的影响。

相关推荐
databook22 分钟前
不平衡样本数据的救星:数据再分配策略
python·机器学习·scikit-learn
补三补四30 分钟前
机器学习-聚类分析算法
人工智能·深度学习·算法·机器学习
荷包蛋蛋怪1 小时前
【北京化工大学】 神经网络与深度学习 实验6 MATAR图像分类
人工智能·深度学习·神经网络·opencv·机器学习·计算机视觉·分类
Uzuki8 小时前
AI可解释性 II | Saliency Maps-based 归因方法(Attribution)论文导读(持续更新)
深度学习·机器学习·可解释性
蹦蹦跳跳真可爱5899 小时前
Python----机器学习(KNN:使用数学方法实现KNN)
人工智能·python·机器学习
云和数据.ChenGuang13 小时前
机器学习之回归算法
人工智能·机器学习·回归
代码骑士13 小时前
聚类(Clustering)基础知识2
机器学习·数据挖掘·聚类
深蓝学院14 小时前
闭环SOTA!北航DiffAD:基于扩散模型实现端到端自动驾驶「多任务闭环统一」
人工智能·机器学习·自动驾驶
仙人掌_lz14 小时前
机器学习ML极简指南
人工智能·python·算法·机器学习·面试·强化学习