机器学习重构光子学设计范式:从智能器件到前沿系统

在AI与光子学深度融合的科研浪潮中,Nature/Science等顶刊聚焦六大方向:光子器件逆向设计、超构表面光学调控、光子神经网络加速、非线性光子芯片、多任务协同优化及光谱智能预测。为应对该趋势,一套系统性知识框架正在形成:

基础融合模块

涵盖空间/集成光子学系统与机器学习原理的交叉逻辑,解析光学神经网络构建机制,奠定智能设计理论基础。

核心能力构建

• 通过Ansys Optics与FDTD仿真平台实战:完成超构表面单元设计、片上波导优化及贝塞尔弯波导等案例

• 掌握粒子群/拓扑优化等逆向设计技术,实现分束器等器件智能生成

• Python机器学习全流程实操:从回归算法到U-Net实现,结合PyTorch/TensorFlow框架开发

前沿应用突破

重点突破三大方向:

1、光学神经网络:衍射神经网络(Science案例)实现图像分类与太赫兹处理

2、芯片制造增强:深度学习优化微纳工艺容差与器件性能

3、测量系统革新:高分辨红外雷达等智能测量方案

本文以Nature子刊、ACS Photonics等前沿工作为案例基底,贯通仿真设计-算法开发-系统实现全链条,为光子芯片、量子技术及全光计算等热点领域提供方法论支撑。

其特色在于将拓扑优化、深度学习等工具深度嵌入光子器件研发闭环,推动科研范式向数据驱动转型。

机器学习赋能的智能光子学器件系统研究与应用(👈全文速通)

相关推荐
吕永强10 分钟前
电网的智能觉醒——人工智能重构能源生态的技术革命与公平悖论
人工智能·科普
极限实验室10 分钟前
喜报 - 极限科技荣获 2025 上海开源创新菁英荟「开源创新新星企业」奖
人工智能·开源
在美的苦命程序员17 分钟前
芯片之后,AI之争的下一个战场是能源?
人工智能
霖0025 分钟前
FPGA通信设计十问
运维·人工智能·经验分享·vscode·fpga开发·编辑器
天上游戏地下人间38 分钟前
基于Opencv的缺陷检测实战
图像处理·人工智能·计算机视觉
A7bert77743 分钟前
【YOLOv8-obb部署至RK3588】模型训练→转换RKNN→开发板部署
linux·c++·人工智能·python·yolo
小和尚同志1 小时前
使用 Dify 工作流实现每日热点简报
人工智能·aigc
番茄老夫子1 小时前
OpenAI推出的语音识别系统Whisper简析
人工智能·whisper·语音识别
铸剑师欧冶子1 小时前
AI领域的黄埔军校:OpenAI是新一代的PayPal Mafia,门生故吏遍天下
人工智能·深度学习·机器学习·gpt-3·文心一言
前网易架构师-高司机2 小时前
手机识别数据集,2628张原始图片,支持yolo,coco json,pasical voc xml等格式的标注
人工智能·手机·数据集