【NLP】如何实现快速加载gensim word2vec的预训练的词向量模型

1 问题

通过以下代码,实现加载word2vec词向量,每次加载都是几分钟,效率特别低。

python 复制代码
from gensim.models import Word2Vec,KeyedVectors

# 读取中文词向量模型(需要提前下载对应的词向量模型文件)
word2vec_model = KeyedVectors.load_word2vec_format('hy-tmp/word2vec.bz2', binary=False)

2 解决方案

(1)方案一

第一次加载后保存为能够快速加载的文件,第二次加载就能快读读取。

python 复制代码
file_path = "word2vec/train_bio_word"
if os.path.exists(file_path):
    word2vec_model = KeyedVectors.load(file_path,mmap='r')
else:
    # 读取中文词向量模型(需要提前下载对应的词向量模型文件)
    word2vec_model = KeyedVectors.load_word2vec_format('hy-tmp/word2vec.bz2', binary=False)
    word2vec_model.init_sims(replace=True)
    word2vec_model.save(file_path)
    

(2)方案二

第一次加载后,只将使用到的词向量以表格的形式保存到本地,第二次读取就不需要加载全部word2vec的,只加载表格中的词向量。

python 复制代码
file_path = "word2vec/train_vocabulary_vector.csv"
if os.path.exists(file_path):
    # 读取词汇-向量字典,csv转字典
    vocabulary_vector = dict(pd.read_csv(file_path))
    # 此时需要将字典中的词向量np.array型数据还原为原始类型,方便以后使用
    for key,value in vocabulary_vector.items():
       vocabulary_vector[key] = np.array(value)
    
else:
    # 所有文本构建词汇表,words_cut 为分词后的list,每个元素为以空格分隔的str.
    vocabulary = list(set([word for item in text_data1 for word in item]))
    # 构建词汇-向量字典
    vocabulary_vector = {}
    for word in vocabulary:
       if word in word2vec_model:
          vocabulary_vector[word] = word2vec_model[word]
    # 储存词汇-向量字典,由于json文件不能很好的保存numpy词向量,故使用csv保存
    pd.DataFrame(vocabulary_vector).to_csv(file_path)

(3)方案三

不使用word2vec的原训练权重,使用Embedding工具库。自动下载权重文件后,高效使用。

参考:https://github.com/vzhong/embeddings

安装库

text 复制代码
pip install embeddings  # from pypi
pip install git+https://github.com/vzhong/embeddings.git  # from github
python 复制代码
from embeddings import GloveEmbedding, FastTextEmbedding, KazumaCharEmbedding, ConcatEmbedding

g = GloveEmbedding('common_crawl_840', d_emb=300, show_progress=True)
f = FastTextEmbedding()
k = KazumaCharEmbedding()
c = ConcatEmbedding([g, f, k])
for w in ['canada', 'vancouver', 'toronto']:
    print('embedding {}'.format(w))
    print(g.emb(w))
    print(f.emb(w))
    print(k.emb(w))
    print(c.emb(w))
相关推荐
MARS_AI_42 分钟前
大模型呼叫技术:客服行业的智能化演进与云蝠实践
人工智能·自然语言处理·交互·信息与通信·agi
渡我白衣5 小时前
AI应用层革命(六)——智能体的伦理边界与法律框架:当机器开始“做决定”
人工智能·深度学习·神经网络·机器学习·计算机视觉·自然语言处理·语音识别
测试人社区-千羽6 小时前
自动化缺陷修复的建议生成:赋能软件测试新范式
运维·人工智能·自然语言处理·分类·数据挖掘·自动化·ux
1024小神6 小时前
xcode也有了自己独有的Ai本地大语言模型支持了
人工智能·语言模型·自然语言处理
无妄无望6 小时前
思维链:Chain-of-Thought Prompting Elicits Reasoning in Large Language Models
人工智能·语言模型·自然语言处理
郭庆汝1 天前
(九)自然语言处理笔记——命名实体的识别
人工智能·自然语言处理·命名实体识别
海边夕阳20061 天前
【每天一个AI小知识】:什么是大语言模型(LLM)?
人工智能·深度学习·神经网络·机器学习·语言模型·自然语言处理·llm
这张生成的图像能检测吗1 天前
(论文速读)MoE-Adapters++: 过动态混合专家适配器实现更有效的视觉语言模型的持续学习
人工智能·自然语言处理·视觉语言模型·持续学习
~~李木子~~1 天前
法律RAG智能问答系统设计与实现
自然语言处理
沃丰科技1 天前
以全栈AI能力重塑智能客服服务效能
人工智能·机器学习·自然语言处理