十四、自回归(AutoRegressive)和自编码(AutoEncoding)语言模型

参考自回归语言模型(AR)和自编码语言模型(AE)

1 自回归语言模型( AR)

**自回归语言模型(AR)**就是根据上文内容(或下文内容)预测下一个(或前一个)可能跟随的单词,就是常说的自左向右(或自右向左)的语言模型任务,即通过前 t - 1(或后 t - 1 ) 个 tokens 来预测当前时刻 t 的 token,代表的自回归语言模型有 ELMO 和 GPT。

1.1 优点

在处理生成类自然语言处理任务时,就是从左向右的,比如文本摘要,机器翻译等,自回归语言模型天然匹配这个过程。

1.2 缺点

该模型是单向的,只能利用上文或者下文的信息,不能同时利用上文和下文的信息。

2 自编码语言模型( AE**)**

自动编码器的逻辑过程是指原始 input(设为 x)经过加权(W 和 b)、映射(Sigmoid)之后得到 y,再对 y 反向加权映射回来成为 z。通过反复迭代训练(W 和 b),使得误差函数 L(H) 最小,即尽可能保证 z 近似于 x ,即完美重构了 x。那么可以说正向权重(W 和 b)是成功的,很好的学习了 input 中的关键特征。

自动编码器过程图如下:参考自动编码器

**降噪自编码器(Denoising AutoEncoder, DAE)**是指当采用无监督(不需要对训练样本进行标记)的方法分层预训练深度网络的权值时,为了学习到较鲁棒的特征,可以在数据的输入层引入随机噪声。

降噪自编码器过程图如下:

自编码语言模型 的名称来自于降噪自编码器(DAE),是通过上下文单词来预测被 [Mask] 的 token(这些被 [Mask] 掉的单词其实就是在输入端加入的噪音,是典型的 的思路),通俗地被称为"完形填空",代表的自编码语言模型有 Word2Vec(CBOW)和 BERT。

2.1 优点

泛化性强,无监督不需要数据标注,可以自然地融入上下文语义信息。

2.2 缺点

  • 适用于"完形填空"式的训练策略,不适用于生成式的问题;
  • 在预训练 Pre-Training 阶段,引入独立性假设,没有考虑预测 [MASK] 之间的相关性;
  • 输入中引入 [Mask] 这一特殊标记对原始 Token 进行替换,而微调 Fine-Tuning 阶段是没有 [Mask] 标记的,导致预训练阶段和微调阶段的数据不一致。
相关推荐
JoannaJuanCV1 小时前
大语言模型基石:Transformer
人工智能·语言模型·transformer
大千AI助手1 小时前
TruthfulQA:衡量语言模型真实性的基准
人工智能·语言模型·自然语言处理·llm·模型评估·truthfulqa·事实性基准
qingyunliushuiyu2 小时前
BI数据可视化:驱动数据价值释放的关键引擎
数据挖掘·数据分析·数据分析系统·数据分析平台·bi数据可视化
张较瘦_3 小时前
[论文阅读] 人工智能 + 软件工程 | 大语言模型驱动的多来源漏洞影响库识别研究解析
论文阅读·人工智能·语言模型
什么都想学的阿超3 小时前
【大语言模型 58】分布式文件系统:训练数据高效存储
人工智能·语言模型·自然语言处理
J_Xiong01174 小时前
【VLMs篇】07:Open-Qwen2VL:在学术资源上对完全开放的多模态大语言模型进行计算高效的预训练
人工智能·语言模型·自然语言处理
艾醒(AiXing-w)5 小时前
探索大语言模型(LLM):Ollama快速安装部署及使用(含Linux环境下离线安装)
linux·人工智能·语言模型
HenrySmale6 小时前
05 回归问题和分类问题
分类·数据挖掘·回归
这张生成的图像能检测吗7 小时前
(综述)视觉任务的视觉语言模型
人工智能·计算机视觉·语言模型·自然语言处理·视觉语言模型
victory043110 小时前
wav2vec微调进行疾病语音分类任务
人工智能·分类·数据挖掘