十四、自回归(AutoRegressive)和自编码(AutoEncoding)语言模型

参考自回归语言模型(AR)和自编码语言模型(AE)

1 自回归语言模型( AR)

**自回归语言模型(AR)**就是根据上文内容(或下文内容)预测下一个(或前一个)可能跟随的单词,就是常说的自左向右(或自右向左)的语言模型任务,即通过前 t - 1(或后 t - 1 ) 个 tokens 来预测当前时刻 t 的 token,代表的自回归语言模型有 ELMO 和 GPT。

1.1 优点

在处理生成类自然语言处理任务时,就是从左向右的,比如文本摘要,机器翻译等,自回归语言模型天然匹配这个过程。

1.2 缺点

该模型是单向的,只能利用上文或者下文的信息,不能同时利用上文和下文的信息。

2 自编码语言模型( AE**)**

自动编码器的逻辑过程是指原始 input(设为 x)经过加权(W 和 b)、映射(Sigmoid)之后得到 y,再对 y 反向加权映射回来成为 z。通过反复迭代训练(W 和 b),使得误差函数 L(H) 最小,即尽可能保证 z 近似于 x ,即完美重构了 x。那么可以说正向权重(W 和 b)是成功的,很好的学习了 input 中的关键特征。

自动编码器过程图如下:参考自动编码器

**降噪自编码器(Denoising AutoEncoder, DAE)**是指当采用无监督(不需要对训练样本进行标记)的方法分层预训练深度网络的权值时,为了学习到较鲁棒的特征,可以在数据的输入层引入随机噪声。

降噪自编码器过程图如下:

自编码语言模型 的名称来自于降噪自编码器(DAE),是通过上下文单词来预测被 [Mask] 的 token(这些被 [Mask] 掉的单词其实就是在输入端加入的噪音,是典型的 的思路),通俗地被称为"完形填空",代表的自编码语言模型有 Word2Vec(CBOW)和 BERT。

2.1 优点

泛化性强,无监督不需要数据标注,可以自然地融入上下文语义信息。

2.2 缺点

  • 适用于"完形填空"式的训练策略,不适用于生成式的问题;
  • 在预训练 Pre-Training 阶段,引入独立性假设,没有考虑预测 [MASK] 之间的相关性;
  • 输入中引入 [Mask] 这一特殊标记对原始 Token 进行替换,而微调 Fine-Tuning 阶段是没有 [Mask] 标记的,导致预训练阶段和微调阶段的数据不一致。
相关推荐
Liue6123123110 小时前
YOLO11-C3k2-MBRConv3改进提升金属表面缺陷检测与分类性能_焊接裂纹气孔飞溅物焊接线识别
人工智能·分类·数据挖掘
Lun3866buzha11 小时前
农业害虫检测_YOLO11-C3k2-EMSC模型实现与分类识别_1
人工智能·分类·数据挖掘
雪兽软件12 小时前
了解大数据分析实施问题和解决方案
数据挖掘·大数据分析
AI资源库15 小时前
GLM-4.7-Flash模型深入解析
人工智能·语言模型
AI资源库20 小时前
OpenClaw:159K Star的开源AI助手正在重新定义“个人AI“的边界
人工智能·语言模型
机器学习之心20 小时前
TCN-Transformer-BiGRU组合模型回归+SHAP分析+新数据预测+多输出!深度学习可解释分析
深度学习·回归·transformer·shap分析
实时数据20 小时前
一手资料结合大数据分析挖掘海量信息中的价值了解用户真实需求 实现精准营销
数据挖掘·数据分析
龙腾AI白云21 小时前
面向开放世界的具身智能泛化能力探索
数据挖掘
AI资源库1 天前
Remotion 一个用 React 程序化制作视频的框架
人工智能·语言模型·音视频
B站_计算机毕业设计之家1 天前
豆瓣电影数据可视化分析系统 | Python Flask框架 requests Echarts 大数据 人工智能 毕业设计源码(建议收藏)✅
大数据·python·机器学习·数据挖掘·flask·毕业设计·echarts