CC表示的意思位捕获比较,CCR表示的是捕获比较寄存器
占空比等效于PWM模拟出来的电压的多少,占空比越大等效出的模拟电压越趋近于高电平,占空比越小等效出来的模拟电压越趋近于低电平,分辨率表示的是占空比变化的精细程度,按照实际项目的需求使用PWM波形可以在数字系统等效输出模拟量,可以实现LED控制亮度和控制电机的速度等操作
输出模式控制器是如何工作的
可以理解为:配置有效的电平就是设置高电平,配置无效的电平就是设置的低电平
舵机简介
电机驱动模块的硬件电路
接线图:PWM驱动呼吸灯
// 配置输出比较模块
//第一个参数的意思是选择定时器,第二个参数的意思是配置结构体
void TIM_OC1Init(TIM_TypeDef* TIMx, TIM_OCInitTypeDef* TIM_OCInitStruct);
void TIM_OC2Init(TIM_TypeDef* TIMx, TIM_OCInitTypeDef* TIM_OCInitStruct);
void TIM_OC3Init(TIM_TypeDef* TIMx, TIM_OCInitTypeDef* TIM_OCInitStruct);
void TIM_OC4Init(TIM_TypeDef* TIMx, TIM_OCInitTypeDef* TIM_OCInitStruct);
void TIM_OCStructInit(TIM_OCInitTypeDef* TIM_OCInitStruct); // 给输出比较结构体赋值一个默认值
// 配置强制输出模式
void TIM_ForcedOC1Config(TIM_TypeDef* TIMx, uint16_t TIM_ForcedAction);
void TIM_ForcedOC2Config(TIM_TypeDef* TIMx, uint16_t TIM_ForcedAction);
void TIM_ForcedOC3Config(TIM_TypeDef* TIMx, uint16_t TIM_ForcedAction);
void TIM_ForcedOC4Config(TIM_TypeDef* TIMx, uint16_t TIM_ForcedAction);
//配置CCR寄存器的预装功能
void TIM_CCPreloadControl(TIM_TypeDef* TIMx, FunctionalState NewState);
void TIM_OC1PreloadConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCPreload);
void TIM_OC2PreloadConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCPreload);
void TIM_OC3PreloadConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCPreload);
void TIM_OC4PreloadConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCPreload);
// 配置快速使能
void TIM_OC1FastConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCFast);
void TIM_OC2FastConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCFast);
void TIM_OC3FastConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCFast);
void TIM_OC4FastConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCFast);
这个不是重点内容
void TIM_OC1FastConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCFast);
void TIM_OC2FastConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCFast);
void TIM_OC3FastConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCFast);
void TIM_OC4FastConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCFast);
// 单独设置输出比较的极性
void TIM_OC1PolarityConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCPolarity);
void TIM_OC1NPolarityConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCNPolarity);
void TIM_OC2PolarityConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCPolarity);
void TIM_OC2NPolarityConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCNPolarity);
void TIM_OC3PolarityConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCPolarity);
void TIM_OC3NPolarityConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCNPolarity);
void TIM_OC4PolarityConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCPolarity);
// 单独修改使能输出参数
void TIM_CCxCmd(TIM_TypeDef* TIMx, uint16_t TIM_Channel, uint16_t TIM_CCx);
void TIM_CCxNCmd(TIM_TypeDef* TIMx, uint16_t TIM_Channel, uint16_t TIM_CCxN);
// 选择输出比较模式
void TIM_SelectOCxM(TIM_TypeDef* TIMx, uint16_t TIM_Channel, uint16_t TIM_OCMode);
**// 单独更改CCR寄存器值的函数,比较重要**
void TIM_SetCompare1(TIM_TypeDef* TIMx, uint16_t Compare1);
void TIM_SetCompare2(TIM_TypeDef* TIMx, uint16_t Compare2);
void TIM_SetCompare3(TIM_TypeDef* TIMx, uint16_t Compare3);
void TIM_SetCompare4(TIM_TypeDef* TIMx, uint16_t Compare4);
PWM的C语言文件
使用PWM实现呼吸灯的效果
cpp
#include "stm32f10x.h" // Device header
void PWM_Init(void){
// 开启时钟,这里TIM2是通用寄存器
RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2,ENABLE);
// GPIO初始化代码
/*开启时钟*/
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE); //开启GPIOA的时钟
// GPIO引脚重映射,表示重映射和引脚之间的关系
RCC_APB2PeriphClockCmd(RCC_APB2Periph_AFIO, ENABLE);
GPIO_PinRemapConfig(GPIO_PartialRemap1_TIM2,ENABLE);
GPIO_PinRemapConfig(GPIO_Remap_SWJ_JTAGDisable,ENABLE);
/*GPIO初始化*/
GPIO_InitTypeDef GPIO_InitStructure;
// 使用复用开漏推挽输出模式
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_15;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_Init(GPIOA, &GPIO_InitStructure); //将PA1和PA2引脚初始化为推挽输出
// 选择时基单元的时钟,选择内部时钟的模式,定时器默认使用的是内部单元的时钟
TIM_InternalClockConfig(TIM2);
// 配置时基单元,初始化结构体
TIM_TimeBaseInitTypeDef TIM_TimeBaseInitStructure;
// 将结构体成员都引用出来放置在这个位置
TIM_TimeBaseInitStructure.TIM_ClockDivision = TIM_CKD_DIV1; // 配置参数是否分屏
TIM_TimeBaseInitStructure.TIM_CounterMode =TIM_CounterMode_Up; // 选择计数的模式选择向上计数
TIM_TimeBaseInitStructure.TIM_Period = 100 -1; // 表示ARR自动重装器的值,这两个参数的取值都要在0-65535之间
TIM_TimeBaseInitStructure.TIM_Prescaler = 720-1; // PSC预分频器的值
TIM_TimeBaseInitStructure.TIM_RepetitionCounter = 0; // 重复计数器的值
// 初始化结构体并将结构体的地址放置在init函数中
TIM_TimeBaseInit(TIM2, &TIM_TimeBaseInitStructure);
// 初始化输出比较单元
TIM_OCInitTypeDef TIM_OCInitStructure;
// 给结构体赋初始值
TIM_OCStructInit(&TIM_OCInitStructure);
// 设置输出比较的模式
TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1;
// 设置输出比较的极性,选择高极性
TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High;
// 设置输出使能,输出状态
TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable ;
//设置CCR,设置ccr寄存器的值
TIM_OCInitStructure.TIM_Pulse = 0; // CCR
TIM_OC1Init(TIM2, &TIM_OCInitStructure);
// 启动定时器
TIM_Cmd(TIM2, ENABLE);
}
void PWM_SetCompare1(uint16_t Compare){
TIM_SetCompare1(TIM2,Compare);
}
PWM头文件
cpp
#ifndef __PWM_H_
#define __PWM_H_
void PWM_Init(void);
void PWM_SetCompare1(uint16_t Compare);
#endif
main主函数文件
cpp
#include "stm32f10x.h" // Device header
#include "Delay.h"
#include "OLED.h"
#include "PWM.h"
uint8_t i;
int main(void)
{
// 初始化oled
OLED_Init();
PWM_Init();
while (1)
{
for(i = 0; i<= 100; i++){
// 这个函数是设置CCR寄存器的值,不直接是占空比
PWM_SetCompare1(i);
Delay_ms(10);
}
for(i = 0; i<= 100; i++){
PWM_SetCompare1(100 - i);
Delay_ms(10);
}
}
}