逻辑回归吧

python 复制代码
import torch
import matplotlib.pyplot as plt
import numpy as np
python 复制代码
import torchvision
# train_set = torchvision.datasets.MNIST(root='../dataset/mnist', train=True, download=True)
# test_set = torchvision.datasets.MNIST(root='../dataset/mnist', train=False, download=True)

您指定的路径 .../dataset/mnist 是一个相对路径,表示将 MNIST 数据集下载到当前目录的上级目录中的 dataset/mnist 目录中。

具体来说,在您的文件系统中,如果您的当前工作目录是 /home/user/,那么相对路径 .../dataset/mnist 将会是 /home/dataset/mnist。

python 复制代码
class LinearModel(torch.nn.Module):
    def __init__(self):
        super(LinearModel, self).__init__()
        self.linear = torch.nn.Linear(1, 1)
    
    def forward(self, x):
        y_pred = self.linear(x)
        return y_pred
python 复制代码
import torch.nn.functional as F
python 复制代码
class LogisticRegressionModel(torch.nn.Module):
    def __init__(self):
        super(LogisticRegressionModel,self).__init__()
        self .linear = torch.nn.Linear(1,1)
        
    def forward(self,x):
        y_pred = F.sigmoid(self.linear(x))
        return y_pred
python 复制代码
model = LogisticRegressionModel()
python 复制代码
criterion = torch.nn.BCELoss(reduction = 'sum')
python 复制代码
optimizer = torch.optim.SGD(model.parameters(),lr=0.01)
python 复制代码
x_data = torch.Tensor([[1.0], [2.0], [3.0]])
y_data = torch.Tensor([[0], [0], [1]])
python 复制代码
for epoch in range(1000):
    y_pred = model(x_data)
    loss = criterion(y_pred,y_data)
    
    print(epoch,loss.item())
    plt.scatter(epoch,loss.data)
    
    optimizer.zero_grad()
    loss.backward()
    optimizer.step()
python 复制代码
x = np.linspace(0, 10, 200) # 每周学习时间
x_t = torch.Tensor(x).view((200, 1)) # 200行1列的矩阵
y_t = model(x_t)
y = y_t.data.numpy()
plt.scatter(x, y)
plt.plot([0, 10], [0.5, 0.5], c='r')
plt.xlabel('Hours')
plt.ylabel('Probability of Pass')
plt.grid()
plt.show()
相关推荐
yi.Ist8 分钟前
数据结构 —— 键值对 map
数据结构·算法
s1533511 分钟前
数据结构-顺序表-猜数字
数据结构·算法·leetcode
Coding小公仔14 分钟前
LeetCode 8. 字符串转换整数 (atoi)
算法·leetcode·职场和发展
GEEK零零七20 分钟前
Leetcode 393. UTF-8 编码验证
算法·leetcode·职场和发展·二进制运算
DoraBigHead1 小时前
小哆啦解题记——异位词界的社交网络
算法
木头左2 小时前
逻辑回归的Python实现与优化
python·算法·逻辑回归
小牛头#4 小时前
clickhouse 各个引擎适用的场景
大数据·clickhouse·机器学习
lifallen6 小时前
Paimon LSM Tree Compaction 策略
java·大数据·数据结构·数据库·算法·lsm-tree
kngines9 小时前
【力扣(LeetCode)】数据挖掘面试题0002:当面对实时数据流时您如何设计和实现机器学习模型?
机器学习·数据挖掘·面试题·实时数据
web_Hsir9 小时前
vue3.2 前端动态分页算法
前端·算法