逻辑回归吧

python 复制代码
import torch
import matplotlib.pyplot as plt
import numpy as np
python 复制代码
import torchvision
# train_set = torchvision.datasets.MNIST(root='../dataset/mnist', train=True, download=True)
# test_set = torchvision.datasets.MNIST(root='../dataset/mnist', train=False, download=True)

您指定的路径 .../dataset/mnist 是一个相对路径,表示将 MNIST 数据集下载到当前目录的上级目录中的 dataset/mnist 目录中。

具体来说,在您的文件系统中,如果您的当前工作目录是 /home/user/,那么相对路径 .../dataset/mnist 将会是 /home/dataset/mnist。

python 复制代码
class LinearModel(torch.nn.Module):
    def __init__(self):
        super(LinearModel, self).__init__()
        self.linear = torch.nn.Linear(1, 1)
    
    def forward(self, x):
        y_pred = self.linear(x)
        return y_pred
python 复制代码
import torch.nn.functional as F
python 复制代码
class LogisticRegressionModel(torch.nn.Module):
    def __init__(self):
        super(LogisticRegressionModel,self).__init__()
        self .linear = torch.nn.Linear(1,1)
        
    def forward(self,x):
        y_pred = F.sigmoid(self.linear(x))
        return y_pred
python 复制代码
model = LogisticRegressionModel()
python 复制代码
criterion = torch.nn.BCELoss(reduction = 'sum')
python 复制代码
optimizer = torch.optim.SGD(model.parameters(),lr=0.01)
python 复制代码
x_data = torch.Tensor([[1.0], [2.0], [3.0]])
y_data = torch.Tensor([[0], [0], [1]])
python 复制代码
for epoch in range(1000):
    y_pred = model(x_data)
    loss = criterion(y_pred,y_data)
    
    print(epoch,loss.item())
    plt.scatter(epoch,loss.data)
    
    optimizer.zero_grad()
    loss.backward()
    optimizer.step()
python 复制代码
x = np.linspace(0, 10, 200) # 每周学习时间
x_t = torch.Tensor(x).view((200, 1)) # 200行1列的矩阵
y_t = model(x_t)
y = y_t.data.numpy()
plt.scatter(x, y)
plt.plot([0, 10], [0.5, 0.5], c='r')
plt.xlabel('Hours')
plt.ylabel('Probability of Pass')
plt.grid()
plt.show()
相关推荐
千金裘换酒19 小时前
LeetCode 移动零元素 快慢指针
算法·leetcode·职场和发展
wm104320 小时前
机器学习第二讲 KNN算法
人工智能·算法·机器学习
NAGNIP20 小时前
一文搞懂机器学习线性代数基础知识!
算法
NAGNIP20 小时前
机器学习入门概述一览
算法
iuu_star20 小时前
C语言数据结构-顺序查找、折半查找
c语言·数据结构·算法
Yzzz-F20 小时前
P1558 色板游戏 [线段树 + 二进制状态压缩 + 懒标记区间重置]
算法
漫随流水21 小时前
leetcode算法(515.在每个树行中找最大值)
数据结构·算法·leetcode·二叉树
mit6.82421 小时前
dfs|前后缀分解
算法
扫地的小何尚21 小时前
NVIDIA RTX PC开源AI工具升级:加速LLM和扩散模型的性能革命
人工智能·python·算法·开源·nvidia·1024程序员节
Yeats_Liao1 天前
MindSpore开发之路(二十四):MindSpore Hub:快速复用预训练模型
人工智能·分布式·神经网络·机器学习·个人开发