MATLAB和Python数值和符号计算可视化物理学气体动能和粒子速度

要点

  1. Python物理学差分数值和符号计算

  2. 热动力学计算:统计力学,分子动力学模型

    1. Python寻找弹性物体的运动,LAMMPS 分子动力学模拟器模拟2D气体分子,Python原子模拟绘图,Python数值计算原子平衡性,Python绘制平衡时原子波动。

    2. MATLAB随机速度原子晶格,编辑读写lammps轨迹文件函数。使用LAMMPS,MATLAB和Python 二维模拟 Lennard-Jones 系统。

    3. Python模拟理想气体热动力学结果:体积,压力和温度。

    4. LAMMPS模拟固体原子数据,Python基于模拟,测量模型左侧粒子的动能。Python计算绘制爱因斯坦晶体宏态的多重性。MATLAB模拟爱因斯坦晶体热运动状态。Python计算两个耦合的晶体熵。MATLAB计算绘制二维晶体热分子运动。

    5. Python数值计算绘图爱因斯坦晶体在微规范系统中谐振子运动概率。Python蒙特卡洛方法模拟亥姆霍兹自由能。Python使用 命中和错过 算法符号计算蒙特卡洛积分估计。MATLAB对比Python 计算热浴的蒙特卡洛伊辛模型。

    6. LAMMPS 模拟低温下液相和气相之间的聚结和相共存,Python基于模拟数值计算。

    7. MATLAB绘制了玻色-爱因斯坦分布和费米-狄拉克分布。

Python物理学数值计算示例 龙格-库塔方法

鉴于计算效率,以下代码只是演示作用

龙格-库塔方法是常微分方程的数值近似,由 Carl Runge 和 Wilhelm Kutta 开发。 通过使用一个区间内的四个斜率值(不一定落在实际解上)并对斜率进行平均,可以获得一个非常好的近似解。在这个例子中,我们将重点关注四阶龙格-库塔方法来帮助我们解决一维散射问题。

为了开始我们的代码,我们将导入一些包来帮助我们进行数学和可视化。

Python 复制代码
import cmath 
import numpy as np 
import matplotlib.pyplot as plt 

从这里开始,我们开始定义方程的初始参数。

python 复制代码
mass = 1.0 
hbar = 1.0 
v0 = 2.0 
alpha = 0.5 
E = 3.0 
i = 1.0j 
x = 10.0 
xf = -10.0 
h = -.001 
xaxis = np.array([], float) 
psi = np.array([], complex) 
psiprime = np.array([], complex) 

一旦我们有了初始值,我们就开始处理定义我们将要使用的方程的函数。我们的主要方程是 k ( x ) k(x) k(x),它是薛定谔方程的重新设计版本,用于求解变量 k k k,以及我们的 Ψ \Psi Ψ 方程,它将由 psione ( x ) (x) (x) 和 psitwo ( x ) (x) (x)定义。

python 复制代码
def v(x): 
    return v0/2.0 * (1.0 + np.tanh(x/alpha))
def k(x): 
    return cmath.sqrt((2*mass/(hbar**2))*(E - v(x)))
def psione(x): 
    return np.exp(i*k(x)*x)
def psitwo(x): 
    return i*k(x)*np.exp(i*k(x)*x)

在此,首先,我们需要定义一个包含初始条件波函数的数组。

python 复制代码
r = np.array([psione(x), psitwo(x)]) 

在数组中设置这些方程,我们可以通过下面将定义的龙格-库塔方法迭代这两个方程,并让它们为我们为 psione(x) 和 psitwo(x) 定义的方程提供近似解 。 但在我们到达方程的主要部分之前,我们需要定义一个更重要的函数。

python 复制代码
def deriv(r,x): 
    return np.array([r[1],-(2.0*mass/(hbar**2) * (E - v(x))*r[0])], complex)

deriv 函数是龙格-库塔的输出经过的地方,该函数从数组 r 中获取我们的值,然后将其推入这些条件。 对于返回的第一个值,非常简单,我们的 x 值将被输入到数组的第二个方程中。 然而,第二个值将经历不同的处理。 这次,x 值将经历薛定谔方程的另一次迭代,其中考虑了波函数 psione(x)。

python 复制代码
while (x >= xf ):
        xaxis = np.append(xaxis, x)
        psi = np.append(psi, r[0])
        psiprime = np.append(psiprime, r[1])
        k1 = h*deriv(r,x)
        k2 = h*deriv(r+k1/2,x+h/2)
        k3 = h*deriv(r+k2/2,x+h/2)
        k4 = h*deriv(r+k3,x+h)
        r += (k1+2*k2+2*k3+k4)/6
        x += h 

在这里,循环几乎涵盖了龙格-库塔的整个过程。通过使用由 k k k 值定义的斜率近似值,每个 k k k 值有助于近似下一个斜率,使我们更接近求解 f ( x ) f(x) f(x)。此外,在获得每个斜率之后,我们获得加权平均值并使用这些新值更新我们的数组,为下一次迭代做好准备。这个过程将在 x \mathrm{x} x​ 轴上我们定义的范围内继续,这最终将为我们提供绘制即将求解的常微分方程所需的值。

龙格-库塔方法可以很容易地适应许多其他方程,大多数时候我们只需要调整导数函数和我们的初始条件方程。 其他示例包括摆常微分方程和行星运动常微分方程。 在下面,我们现在可以找到完整的代码以及额外的步骤,例如求解反射和透射值的函数,以及如何绘制我们的值。

python 复制代码
import cmath 
import numpy as np 
import matplotlib.pyplot as plt 
mass = 1.0 
hbar = 1.0 
v0 = 2.0 
alpha = 0.5 
E = 3.0 
i = 1.0j 
x = 10.0 
xf = -10.0 
h = -.001 
xaxis = np.array([], float) 
psi = np.array([], complex) 
psiprime = np.array([], complex) 
def v(x): 
    return v0/2.0 * (1.0 + np.tanh(x/alpha))
def k(x): 
    return cmath.sqrt((2*mass/(hbar**2))*(E - v(x)))
r = np.array([psione(x), psitwo(x)]) 
def deriv(r,x): 
    return np.array([r[1],-(2.0*mass/(hbar**2) * (E - v(x))*r[0])], complex)
while (x >= xf ):
        xaxis = np.append(xaxis, x)
        psi = np.append(psi, r[0])
        psiprime = np.append(psiprime, r[1])
        k1 = h*deriv(r,x)
        k2 = h*deriv(r+k1/2,x+h/2)
        k3 = h*deriv(r+k2/2,x+h/2)
        k4 = h*deriv(r+k3,x+h)
        r += (k1+2*k2+2*k3+k4)/6
        x += h 
psi1 = psi[20000]; psi2 = psiprime[20000]; x = 10; xf = -10
def reflection(x, y):
    aa = (psi1 + psi2/(i*k(y)))/(2*np.exp(i*k(y)*y))
    bb = (psi1 - psi2/(i*k(y)))/(2*np.exp(-i*k(y)*y))
    return (np.abs(bb)/np.abs(aa))**2
def transmission(x,y):
    aa = (psi1 + psi2/(i*k(y)))/(2.0*np.exp(i*k(y)*y))
    return k(x)/k(y) * 1.0/(np.abs(aa))**2
print('reflection = ',reflection(x,xf))
print('transmission = ', transmission(x,xf))
print('r + t = ', reflection(x,xf) + transmission(x,xf))
fig, ax = plt.subplots(1,2, figsize = (15,5))
ax[0].plot(xaxis, psi.real, xaxis, psi.imag, xaxis, v(xaxis))
ax[1].plot(xaxis, psiprime.real, xaxis, psiprime.imag, xaxis, v(xaxis))
plt.show()

使用Scipy 改写为:

python 复制代码
import cmath
import numpy as np
import matplotlib.pyplot as plt
from scipy.integrate import odeint, solve_ivp
E = 3; m = 1; h = 1; alpha = .5; v0=2; i = 1.0j; xi = 10; xf = -10
def v(x): return v0/2.0 * (1.0 + np.tanh(x/alpha))
def k(x): return cmath.sqrt((2*m/(h**2))*(E - v(x)))
def psione(x): return np.exp(i*k(x)*x)
def psitwo(x): return i*k(x)*np.exp(i*k(x)*x)
def deriv(x, y): return [y[1], -(2.0*m/(h**2.0) * (E - v(x))*y[0])]

values = solve_ivp(deriv, [10, -10], [psione(xi), psitwo(xi)], first_step = .001, max_step = .001)
psi1 = values.y[0,20000]; psi2 = values.y[1,20000]; x = 10; xf = -10
def reflection(x, y):
    aa = (psi1 + psi2/(i*k(y)))/(2*np.exp(i*k(y)*y))
    bb = (psi1 - psi2/(i*k(y)))/(2*np.exp(-i*k(y)*y))
    return (np.abs(bb)/np.abs(aa))**2
def transmission(x,y):
    aa = (psi1 + psi2/(i*k(y)))/(2.0*np.exp(i*k(y)*y))
    return k(x)/k(y) * 1.0/(np.abs(aa))**2
print('reflection = ',reflection(x,xf))
print('transmission = ', transmission(x,xf))
print('r + t = ', reflection(x,xf) + transmission(x,xf))
fig, ax = plt.subplots(1,2, figsize = (15,5))
ax[0].plot(values.t, values.y[0].real, values.t, values.y[0].imag, values.t, v(values.t))
ax[1].plot(values.t, values.y[1].real, values.t, values.y[1].imag, values.t, v(values.t))
plt.show()
参阅一:计算思维
参阅二:亚图跨际
相关推荐
通信.萌新41 分钟前
OpenCV边沿检测(Python版)
人工智能·python·opencv
Bran_Liu1 小时前
【LeetCode 刷题】字符串-字符串匹配(KMP)
python·算法·leetcode
weixin_307779131 小时前
分析一个深度学习项目并设计算法和用PyTorch实现的方法和步骤
人工智能·pytorch·python
Channing Lewis2 小时前
flask实现重启后需要重新输入用户名而避免浏览器使用之前已经记录的用户名
后端·python·flask
Channing Lewis2 小时前
如何在 Flask 中实现用户认证?
后端·python·flask
水银嘻嘻2 小时前
【Mac】Python相关知识经验
开发语言·python·macos
汤姆和佩琦2 小时前
2025-1-20-sklearn学习(42) 使用scikit-learn计算 钿车罗帕,相逢处,自有暗尘随马。
人工智能·python·学习·机器学习·scikit-learn·sklearn
我的运维人生3 小时前
Java并发编程深度解析:从理论到实践
java·开发语言·python·运维开发·技术共享
lljss20203 小时前
python创建一个httpServer网页上传文件到httpServer
开发语言·python
Makesths3 小时前
【python基础】用Python写一个2048小游戏
python