性能优化利器——预计算(含报表场景实践)

写在前面

很多人觉得工作像是无尽的CRUD,实际上工作场景中包含很多值得思考的可以性能优化的点。针对数据而言,比较常见的性能优化方式有两种,一种是 cache, 一种是预计算。本篇文章会介绍后者。

什么是预计算?

预计算和cache一样,都是在用空间换时间,顾名思义,将计算提前到更早的阶段(比如数据导入阶段),可以减少查询时的耗时与成本。

预计算在报表场景的实践

背景

报表是一个常见的业务场景,为了展示不同纬度的业务数据,我们需要在一个页面中展示不同维度不同展现形式的的报表。从技术角度,前端页面会同时发送多个请求至服务器,并接受服务器返回的结果。

以工单系统为例,我们可能需要查看一定时间内工单相关的数据(比如成功率、发起工单数),以及一定时间内用户相关的数据(比如每日使用次数、新增用户/留存率),假如这些数据存在一张表中,那我们可能会根据请求数据的不同编写不同的sql。

举个例子

然而同一时间的多个sql必然会带来耗时的增加,既然数据存在于一张表中,那是否可以只查询一次拿取所有需要的数据呢?

如图,通过一次性查询结果并根据请求的需要进行初步的计算再返回给浏览器,这样的好处是减少了因SQL查询而导致的网络传输的次数(网络传输向来是查询数据场景中耗时的大头)

不足之处

这里面有一个漏洞,就是多个请求其实是同时发送,那么让多个请求等待一次网络请求的结果本身也是一个耗时点,在第一个请求抢锁并查询数据的时间里,其他的请求其实都是阻塞等待的,而其他的请求不断的轮询本身也会造成CPU资源的挤占,需要根据场景设计等待时间

究其本质

前面说了,预计算和cache一样,都是在用空间换时间

如果我们在数据导入阶段就计算出不同的用户数据,那么虽然多个sql会增加网络传输耗时,但无论是DB还是Server的计算消耗却都没有了

写在最后

两种思路我觉得都有可取之处,有趣的是,究竞哪个思路查询更快并不是一个静止的答案,而是需要综合考虑自己的报表个数,查询数据量级等多个条件。

相关推荐
陈橘又青7 小时前
100% AI 写的开源项目三周多已获得 800 star 了
人工智能·后端·ai·restful·数据
2501_941148618 小时前
C++实时数据处理实战:多线程与异步IO结合高性能代码解析
java·后端·struts
IT_陈寒8 小时前
Redis实战:5个高频应用场景下的性能优化技巧,让你的QPS提升50%
前端·人工智能·后端
mzlogin8 小时前
借助 Let's Encrypt 节省 SSL 证书费用
后端·devops
虎子_layor8 小时前
单机压测从百到三千:一次短链跳转服务的全链路性能优化实战
后端·性能优化
SelectDB8 小时前
Apache Doris 中的 Data Trait:性能提速 2 倍的秘密武器
数据库·后端·apache
zhengzizhe9 小时前
LangGraph4j LangChain4j JAVA 多Agent编排详解
java·后端
程序员鱼皮9 小时前
又被 Cursor 烧了 1 万块,我麻了。。。
前端·后端·ai·程序员·大模型·编程
福大大架构师每日一题9 小时前
2025-11-27:为视频标题生成标签。用go语言,给定一个字符串 caption(视频标题),按下面顺序处理并输出一个标签: 1. 将标题中的各个词合并成一
后端
程序员爱钓鱼9 小时前
Go语言 OCR 常用识别库与实战指南
后端·go·trae