MapReduce面试重点

文章目录

  • [1. 简述MapReduce整个流程](#1. 简述MapReduce整个流程)

1. 简述MapReduce整个流程

  • 数据划分(Input Splitting):开始时,输入数据被分割成逻辑上的小块,每个块被称为Input Split。

  • 映射(Map):每个Input Split 由一个或多个Map任务处理,这些任务通过映射函数(Map函数)将数据处理成中间键值对。

  • 合并(Shuffle and Sort):中间键值对被分发到不同节点,以便相同键的值能被发送到同一个Reduce任务,同时对键进行排序,确保相同的键在Reduce阶段按顺序到达。

  • 归约(Reduce):Reduce任务接收来自Map阶段的中间键值对,并根据归约函数(Reduce函数)将它们合并成更小的一组值。

  • 输出(Output):Reduce阶段生成的结果被写入输出目标,如文件系统中的文件或数据库中的表格,作为MapReduce过程的最终结果。

相关推荐
IvanCodes36 分钟前
七、Sqoop Job:简化与自动化数据迁移任务及免密执行
大数据·数据库·hadoop·sqoop
冬至喵喵2 小时前
【hive】函数集锦:窗口函数、列转行、日期函数
大数据·数据仓库·hive·hadoop
暗影八度2 小时前
Spark流水线+Gravitino+Marquez数据血缘采集
大数据·分布式·spark
Tianyanxiao4 小时前
华为×小鹏战略合作:破局智能驾驶深水区的商业逻辑深度解析
大数据·人工智能·经验分享·华为·金融·数据分析
线条16 小时前
大数据 ETL 工具 Sqoop 深度解析与实战指南
大数据·sqoop·etl
mazhafener12313 小时前
智慧照明:集中控制器、单双灯控制器与智慧灯杆网关的高效协同
大数据
打码人的日常分享13 小时前
物联网智慧医院建设方案(PPT)
大数据·物联网·架构·流程图·智慧城市·制造
Lansonli15 小时前
大数据Spark(六十一):Spark基于Standalone提交任务流程
大数据·分布式·spark
Rverdoser16 小时前
电脑硬盘分几个区好
大数据