Sklearn K-均值算法

以下是一个使用Sklearn库实现K-均值聚类算法的简单代码示例。K-均值算法是一种迭代算法,用于将数据集分为K个簇,使得每个簇的内部平方误差最小。

python 复制代码
# 导入必要的库
from sklearn.cluster import KMeans
from sklearn.metrics import silhouette_score
import numpy as np
# 创建样本数据
# X是一个包含特征的二维数组
# 这里我们随机生成数据
np.random.seed(0)
X = np.random.rand(100, 2)  # 100个样本,每个样本有2个特征
# 创建KMeans聚类模型实例
# 你可以根据需要调整n_clusters参数,即簇的数量
kmeans = KMeans(n_clusters=3, random_state=42)
# 训练模型
kmeans.fit(X)
# 预测聚类结果
labels = kmeans.predict(X)
# 计算并打印轮廓系数,评估聚类效果
silhouette = silhouette_score(X, labels)
print(f"轮廓系数为: {silhouette}")
# 打印聚类中心
print("聚类中心:", kmeans.cluster_centers_)
# 打印每个样本的预测标签
print("预测标签:", labels)

在上面的代码中,我们首先生成了一些随机数据作为样例,然后创建了一个KMeans聚类模型,并使用数据来拟合模型。在模型训练之后,我们使用轮廓系数来评估聚类的质量,轮廓系数取值范围在-1到1之间,值越大表示聚类效果越好。我们还打印出了聚类中心和每个样本的预测标签,以便于理解聚类结果。

请注意,K-均值算法对初始中心的选择敏感,可能会导致不同的运行结果。为了获得更稳定的结果,通常建议在多次运行中使用不同的初始中心,并选择具有最高轮廓系数的聚类结果。

相关推荐
橡晟4 小时前
深度学习入门:让神经网络变得“深不可测“⚡(二)
人工智能·python·深度学习·机器学习·计算机视觉
墨尘游子4 小时前
神经网络的层与块
人工智能·python·深度学习·机器学习
Leah01054 小时前
机器学习、深度学习、神经网络之间的关系
深度学习·神经网络·机器学习·ai
九章云极AladdinEdu7 小时前
摩尔线程MUSA架构深度调优指南:从CUDA到MUSA的显存访问模式重构原则
人工智能·pytorch·深度学习·机器学习·语言模型·tensorflow·gpu算力
F_D_Z9 小时前
【EM算法】三硬币模型
算法·机器学习·概率论·em算法·极大似然估计
嘗_11 小时前
机器学习/深度学习训练day1
人工智能·深度学习·机器学习
点云SLAM13 小时前
PyTorch张量(Tensor)创建的方式汇总详解和代码示例
人工智能·pytorch·python·深度学习·机器学习·张量创建方式
辰尘_星启15 小时前
【机器学习】反向传播如何求梯度(公式推导)
人工智能·深度学习·机器学习·强化学习·梯度下降·反向传播
我.佛.糍.粑16 小时前
Shusen Wang推荐系统学习 --召回 矩阵补充 双塔模型
人工智能·学习·机器学习·矩阵·推荐算法
苦瓜汤补钙17 小时前
论文阅读:WildGS-SLAM:Monocular Gaussian Splatting SLAM in Dynamic Environments
linux·论文阅读·机器学习