Sklearn K-均值算法

以下是一个使用Sklearn库实现K-均值聚类算法的简单代码示例。K-均值算法是一种迭代算法,用于将数据集分为K个簇,使得每个簇的内部平方误差最小。

python 复制代码
# 导入必要的库
from sklearn.cluster import KMeans
from sklearn.metrics import silhouette_score
import numpy as np
# 创建样本数据
# X是一个包含特征的二维数组
# 这里我们随机生成数据
np.random.seed(0)
X = np.random.rand(100, 2)  # 100个样本,每个样本有2个特征
# 创建KMeans聚类模型实例
# 你可以根据需要调整n_clusters参数,即簇的数量
kmeans = KMeans(n_clusters=3, random_state=42)
# 训练模型
kmeans.fit(X)
# 预测聚类结果
labels = kmeans.predict(X)
# 计算并打印轮廓系数,评估聚类效果
silhouette = silhouette_score(X, labels)
print(f"轮廓系数为: {silhouette}")
# 打印聚类中心
print("聚类中心:", kmeans.cluster_centers_)
# 打印每个样本的预测标签
print("预测标签:", labels)

在上面的代码中,我们首先生成了一些随机数据作为样例,然后创建了一个KMeans聚类模型,并使用数据来拟合模型。在模型训练之后,我们使用轮廓系数来评估聚类的质量,轮廓系数取值范围在-1到1之间,值越大表示聚类效果越好。我们还打印出了聚类中心和每个样本的预测标签,以便于理解聚类结果。

请注意,K-均值算法对初始中心的选择敏感,可能会导致不同的运行结果。为了获得更稳定的结果,通常建议在多次运行中使用不同的初始中心,并选择具有最高轮廓系数的聚类结果。

相关推荐
Coding茶水间1 天前
基于深度学习的安检危险品检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
图像处理·人工智能·深度学习·yolo·目标检测·机器学习·计算机视觉
dulu~dulu1 天前
机器学习题目总结(一)
人工智能·神经网络·决策树·机器学习·学习笔记·线性模型·模型评估与选择
Niuguangshuo1 天前
自编码器与变分自编码器:【2】自编码器的局限性
pytorch·深度学习·机器学习
做科研的周师兄1 天前
中国土壤有机质数据集
人工智能·算法·机器学习·分类·数据挖掘
那小子、真烦1 天前
T-RAG:LLM实战中的树结构增强经验(中文翻译)
机器学习
Narrastory1 天前
拆解指数加权平均:5 分钟看懂机器学习的 “数据平滑神器”
人工智能·机器学习
不惑_1 天前
通俗理解卷积神经网络
人工智能·windows·python·深度学习·机器学习
小兔崽子去哪了1 天前
机器学习 线性回归
后端·python·机器学习
沃恩智慧1 天前
不确定性量化难题破解!贝叶斯+LSTM,革新时序预测!
人工智能·机器学习·lstm
Narrastory1 天前
最大似然估计,香农熵,交叉熵与KL散度的详细解读与实现
人工智能·机器学习