Sklearn K-均值算法

以下是一个使用Sklearn库实现K-均值聚类算法的简单代码示例。K-均值算法是一种迭代算法,用于将数据集分为K个簇,使得每个簇的内部平方误差最小。

python 复制代码
# 导入必要的库
from sklearn.cluster import KMeans
from sklearn.metrics import silhouette_score
import numpy as np
# 创建样本数据
# X是一个包含特征的二维数组
# 这里我们随机生成数据
np.random.seed(0)
X = np.random.rand(100, 2)  # 100个样本,每个样本有2个特征
# 创建KMeans聚类模型实例
# 你可以根据需要调整n_clusters参数,即簇的数量
kmeans = KMeans(n_clusters=3, random_state=42)
# 训练模型
kmeans.fit(X)
# 预测聚类结果
labels = kmeans.predict(X)
# 计算并打印轮廓系数,评估聚类效果
silhouette = silhouette_score(X, labels)
print(f"轮廓系数为: {silhouette}")
# 打印聚类中心
print("聚类中心:", kmeans.cluster_centers_)
# 打印每个样本的预测标签
print("预测标签:", labels)

在上面的代码中,我们首先生成了一些随机数据作为样例,然后创建了一个KMeans聚类模型,并使用数据来拟合模型。在模型训练之后,我们使用轮廓系数来评估聚类的质量,轮廓系数取值范围在-1到1之间,值越大表示聚类效果越好。我们还打印出了聚类中心和每个样本的预测标签,以便于理解聚类结果。

请注意,K-均值算法对初始中心的选择敏感,可能会导致不同的运行结果。为了获得更稳定的结果,通常建议在多次运行中使用不同的初始中心,并选择具有最高轮廓系数的聚类结果。

相关推荐
Learn Beyond Limits1 小时前
文献阅读:A Probabilistic U-Net for Segmentation of Ambiguous Images
论文阅读·人工智能·深度学习·算法·机器学习·计算机视觉·ai
自可乐2 小时前
LangGraph从入门到精通:构建智能Agent的完整指南
人工智能·python·机器学习
jay神3 小时前
森林火灾检测数据集
算法·机器学习·目标跟踪
Cemtery1163 小时前
Day40 早停策略和模型权重的保存
人工智能·python·深度学习·机器学习
Christo34 小时前
TKDE-2026《Efficient Co-Clustering via Bipartite Graph Factorization》
人工智能·算法·机器学习·数据挖掘
明月照山海-5 小时前
机器学习周报三十三
人工智能·机器学习
毕设源码-钟学长6 小时前
【开题答辩全过程】以 基于协同过滤推荐算法的小说漫画网站设计与实现为例,包含答辩的问题和答案
算法·机器学习·推荐算法
渡我白衣6 小时前
【MySQL基础】(2):数据库基础概念
数据库·人工智能·深度学习·神经网络·mysql·机器学习·自然语言处理
【赫兹威客】浩哥7 小时前
交通违章识别数据集与YOLO系列模型训练成果
人工智能·深度学习·机器学习
Yeats_Liao7 小时前
微调决策树:何时使用Prompt Engineering,何时选择Fine-tuning?
前端·人工智能·深度学习·算法·决策树·机器学习·prompt