Sklearn K-均值算法

以下是一个使用Sklearn库实现K-均值聚类算法的简单代码示例。K-均值算法是一种迭代算法,用于将数据集分为K个簇,使得每个簇的内部平方误差最小。

python 复制代码
# 导入必要的库
from sklearn.cluster import KMeans
from sklearn.metrics import silhouette_score
import numpy as np
# 创建样本数据
# X是一个包含特征的二维数组
# 这里我们随机生成数据
np.random.seed(0)
X = np.random.rand(100, 2)  # 100个样本,每个样本有2个特征
# 创建KMeans聚类模型实例
# 你可以根据需要调整n_clusters参数,即簇的数量
kmeans = KMeans(n_clusters=3, random_state=42)
# 训练模型
kmeans.fit(X)
# 预测聚类结果
labels = kmeans.predict(X)
# 计算并打印轮廓系数,评估聚类效果
silhouette = silhouette_score(X, labels)
print(f"轮廓系数为: {silhouette}")
# 打印聚类中心
print("聚类中心:", kmeans.cluster_centers_)
# 打印每个样本的预测标签
print("预测标签:", labels)

在上面的代码中,我们首先生成了一些随机数据作为样例,然后创建了一个KMeans聚类模型,并使用数据来拟合模型。在模型训练之后,我们使用轮廓系数来评估聚类的质量,轮廓系数取值范围在-1到1之间,值越大表示聚类效果越好。我们还打印出了聚类中心和每个样本的预测标签,以便于理解聚类结果。

请注意,K-均值算法对初始中心的选择敏感,可能会导致不同的运行结果。为了获得更稳定的结果,通常建议在多次运行中使用不同的初始中心,并选择具有最高轮廓系数的聚类结果。

相关推荐
liliangcsdn2 小时前
基于人类反馈的强化学习框架-RLHF&PPO
人工智能·机器学习
Lips6112 小时前
第四章 决策树
算法·决策树·机器学习
童话名剑4 小时前
神经风格迁移(吴恩达深度学习笔记)
深度学习·机器学习·计算机视觉·特征检测·神经风格迁移
d0ublεU0x005 小时前
预训练模型
人工智能·机器学习
edisao5 小时前
二。星链真正危险的地方,不在天上,而在网络底层
大数据·网络·人工智能·python·科技·机器学习
永远都不秃头的程序员(互关)6 小时前
【K-Means深度探索(三)】告别“初始陷阱”:K-Means++优化质心初始化全解析!
算法·机器学习·kmeans
咚咚王者6 小时前
人工智能之核心基础 机器学习 第十六章 模型优化
人工智能·机器学习
叫我:松哥6 小时前
基于Flask框架开发的二手房数据分析与推荐管理平台,集成大数据分析、机器学习预测和智能推荐技术
大数据·python·深度学习·机器学习·数据分析·flask
高洁016 小时前
AIGC技术与进展(2)
人工智能·python·深度学习·机器学习·数据挖掘
指掀涛澜天下惊7 小时前
概率论 - 贝叶斯定理
人工智能·机器学习·概率论·贝叶斯定理·贝叶斯公式