Sklearn K-均值算法

以下是一个使用Sklearn库实现K-均值聚类算法的简单代码示例。K-均值算法是一种迭代算法,用于将数据集分为K个簇,使得每个簇的内部平方误差最小。

python 复制代码
# 导入必要的库
from sklearn.cluster import KMeans
from sklearn.metrics import silhouette_score
import numpy as np
# 创建样本数据
# X是一个包含特征的二维数组
# 这里我们随机生成数据
np.random.seed(0)
X = np.random.rand(100, 2)  # 100个样本,每个样本有2个特征
# 创建KMeans聚类模型实例
# 你可以根据需要调整n_clusters参数,即簇的数量
kmeans = KMeans(n_clusters=3, random_state=42)
# 训练模型
kmeans.fit(X)
# 预测聚类结果
labels = kmeans.predict(X)
# 计算并打印轮廓系数,评估聚类效果
silhouette = silhouette_score(X, labels)
print(f"轮廓系数为: {silhouette}")
# 打印聚类中心
print("聚类中心:", kmeans.cluster_centers_)
# 打印每个样本的预测标签
print("预测标签:", labels)

在上面的代码中,我们首先生成了一些随机数据作为样例,然后创建了一个KMeans聚类模型,并使用数据来拟合模型。在模型训练之后,我们使用轮廓系数来评估聚类的质量,轮廓系数取值范围在-1到1之间,值越大表示聚类效果越好。我们还打印出了聚类中心和每个样本的预测标签,以便于理解聚类结果。

请注意,K-均值算法对初始中心的选择敏感,可能会导致不同的运行结果。为了获得更稳定的结果,通常建议在多次运行中使用不同的初始中心,并选择具有最高轮廓系数的聚类结果。

相关推荐
非著名架构师30 分钟前
破解“AI幻觉”,锁定真实风险:专业气象模型如何为企业提供可信的极端天气决策依据?
人工智能·深度学习·机器学习·数据分析·风光功率预测·高精度气象数据·高精度天气预报数据
忆~遂愿36 分钟前
昇腾 Triton-Ascend 开源实战:架构解析、环境搭建与配置速查
人工智能·python·深度学习·机器学习·自然语言处理
高洁011 小时前
向量数据库拥抱大模型
python·深度学习·算法·机器学习·transformer
Hello娃的1 小时前
【神经网络】构成单元、网络结构、训练过程
深度学习·神经网络·机器学习
DR-ZF-3 小时前
20251210 线性最小二乘法迭代拟合(梯度下降)
算法·机器学习·最小二乘法
free-elcmacom3 小时前
机器学习进阶<6>神奇的披萨店与学区房:走进RBFN的直觉世界
人工智能·python·机器学习·rbfn
free-elcmacom3 小时前
机器学习进阶<7>人脸识别特征锚点Python实现
人工智能·python·机器学习·rbfn
xiyuping243 小时前
强化学习之——moutaincar
算法·机器学习
勇气要爆发4 小时前
【第一阶段—数学基础】第六章:AI数学入门:线性代数基础—变形金刚的骨架
人工智能·线性代数·机器学习
秋刀鱼 ..4 小时前
2026年工业物联网与信息技术国际学术会议(IIoTIT 2026)
人工智能·深度学习·神经网络·物联网·机器学习·人机交互