Sklearn K-均值算法

以下是一个使用Sklearn库实现K-均值聚类算法的简单代码示例。K-均值算法是一种迭代算法,用于将数据集分为K个簇,使得每个簇的内部平方误差最小。

python 复制代码
# 导入必要的库
from sklearn.cluster import KMeans
from sklearn.metrics import silhouette_score
import numpy as np
# 创建样本数据
# X是一个包含特征的二维数组
# 这里我们随机生成数据
np.random.seed(0)
X = np.random.rand(100, 2)  # 100个样本,每个样本有2个特征
# 创建KMeans聚类模型实例
# 你可以根据需要调整n_clusters参数,即簇的数量
kmeans = KMeans(n_clusters=3, random_state=42)
# 训练模型
kmeans.fit(X)
# 预测聚类结果
labels = kmeans.predict(X)
# 计算并打印轮廓系数,评估聚类效果
silhouette = silhouette_score(X, labels)
print(f"轮廓系数为: {silhouette}")
# 打印聚类中心
print("聚类中心:", kmeans.cluster_centers_)
# 打印每个样本的预测标签
print("预测标签:", labels)

在上面的代码中,我们首先生成了一些随机数据作为样例,然后创建了一个KMeans聚类模型,并使用数据来拟合模型。在模型训练之后,我们使用轮廓系数来评估聚类的质量,轮廓系数取值范围在-1到1之间,值越大表示聚类效果越好。我们还打印出了聚类中心和每个样本的预测标签,以便于理解聚类结果。

请注意,K-均值算法对初始中心的选择敏感,可能会导致不同的运行结果。为了获得更稳定的结果,通常建议在多次运行中使用不同的初始中心,并选择具有最高轮廓系数的聚类结果。

相关推荐
春日见11 分钟前
如何避免代码冲突,拉取分支
linux·人工智能·算法·机器学习·自动驾驶
Keep_Trying_Go2 小时前
基于GAN的文生图算法详解ControlGAN(Controllable Text-to-Image Generation)
人工智能·python·深度学习·神经网络·机器学习·生成对抗网络·文生图
懒羊羊吃辣条3 小时前
电力负荷预测怎么做才不翻车
人工智能·深度学习·机器学习·时间序列
人工智能培训5 小时前
基于Transformer的人工智能模型搭建与fine-tuning
人工智能·深度学习·机器学习·transformer·知识图谱·数字孪生·大模型幻觉
板面华仔5 小时前
机器学习入门(二)——逻辑回归 (Logistic Regression)
python·机器学习
一人の梅雨6 小时前
VVIC图片搜索接口进阶实战:服装批发场景下的精准识图与批量调度方案
开发语言·机器学习·php
矢志航天的阿洪7 小时前
IGRF-13 数学细节与公式说明
线性代数·机器学习·矩阵
小鸡吃米…8 小时前
机器学习 —— 数据缩放
人工智能·python·机器学习
JHC0000008 小时前
智能体造论子--简单封装大模型输出审核器
开发语言·python·机器学习
龙腾AI白云8 小时前
AI算法实战:逻辑回归在风控场景中的应用
深度学习·机器学习·知识图谱