Sklearn K-均值算法

以下是一个使用Sklearn库实现K-均值聚类算法的简单代码示例。K-均值算法是一种迭代算法,用于将数据集分为K个簇,使得每个簇的内部平方误差最小。

python 复制代码
# 导入必要的库
from sklearn.cluster import KMeans
from sklearn.metrics import silhouette_score
import numpy as np
# 创建样本数据
# X是一个包含特征的二维数组
# 这里我们随机生成数据
np.random.seed(0)
X = np.random.rand(100, 2)  # 100个样本,每个样本有2个特征
# 创建KMeans聚类模型实例
# 你可以根据需要调整n_clusters参数,即簇的数量
kmeans = KMeans(n_clusters=3, random_state=42)
# 训练模型
kmeans.fit(X)
# 预测聚类结果
labels = kmeans.predict(X)
# 计算并打印轮廓系数,评估聚类效果
silhouette = silhouette_score(X, labels)
print(f"轮廓系数为: {silhouette}")
# 打印聚类中心
print("聚类中心:", kmeans.cluster_centers_)
# 打印每个样本的预测标签
print("预测标签:", labels)

在上面的代码中,我们首先生成了一些随机数据作为样例,然后创建了一个KMeans聚类模型,并使用数据来拟合模型。在模型训练之后,我们使用轮廓系数来评估聚类的质量,轮廓系数取值范围在-1到1之间,值越大表示聚类效果越好。我们还打印出了聚类中心和每个样本的预测标签,以便于理解聚类结果。

请注意,K-均值算法对初始中心的选择敏感,可能会导致不同的运行结果。为了获得更稳定的结果,通常建议在多次运行中使用不同的初始中心,并选择具有最高轮廓系数的聚类结果。

相关推荐
infiniteWei9 分钟前
【技术人如何用爬虫+机器学习识别并屏蔽恶意广告】第1课:爬虫与广告反欺诈入门
人工智能·爬虫·机器学习
540_54042 分钟前
ADVANCE Day23
人工智能·python·机器学习
有为少年1 小时前
数据增强在小型卷积神经网络中的有效性探究
人工智能·深度学习·神经网络·机器学习·cnn
Jerryhut2 小时前
sklearn函数总结九— 朴素贝叶斯
机器学习·scikit-learn·概率论·sklearn
我不是QI2 小时前
周志华《机器学习—西瓜书》六
人工智能·机器学习
中國龍在廣州2 小时前
AI顶会ICML允许AI参与审稿
人工智能·深度学习·算法·机器学习·chatgpt
陈天伟教授4 小时前
人工智能应用-机器视觉:车牌识别(1)
人工智能·神经网络·机器学习
祝余Eleanor4 小时前
DAY 39 Dataset和Dataloader
人工智能·深度学习·神经网络·机器学习
玦尘、4 小时前
《统计学习方法》第7章——支持向量机SVM(下)【学习笔记】
机器学习·支持向量机·学习方法