R语言:microeco:一个用于微生物群落生态学数据挖掘的R包,第六:trans_nullmodel class

近几十年来,系统发育分析和零模型的整合通过增加系统发育维度,更有力地促进了生态位和中性影响对群落聚集的推断。trans_nullmodel类提供了一个封装,包括系统发育信号、beta平均成对系统发育距离(betaMPD)、beta平均最近分类单元距离(betaMNTD)、beta最近分类单元指数(betaNTI)、beta净相关指数(betaNRI)和基于bray - curtis的Raup-Crick (rbray)的计算。系统发育信号分析方法基于地幔相关图,与其他方法相比,系统发育信号的变化直观、清晰。betaMNTD和betaMPD的算法经过优化,比picante包中的算法更快。rbray和betaNTI(或betaNRI)的组合可以用来推断在特定假设下支配群落聚集的每个生态过程的强度。这可以通过函数cal_process()来解析每个推断进程的百分比来实现。我们首先检查系统发育信号。

> t1 <- trans_nullmodel$new(dataset, taxa_number = 1000, add_data = env_data_16S)

> t1$cal_mantel_corr(use_env = "pH")

> t1$plot_mantel_corr()

betaNRI(ses.betampd)用于显示"基础"系统发育转换, 与betaNTI相比,它可以捕获更多与深层系统发育相关的周转信息。

值得注意的是,随着几十年的发展,存在许多零模型。

在trans_nullmodel类中,我们随机化了物种的系统发育亲缘关系

这种洗牌方法固定了物种α-多样性和β-多样性的观察水平,

以探索观察到的系统发育转换是否与物种间系统发育亲缘关系随机的零模型有显著差异。

> t1$cal_ses_betampd(runs=500, abundance.weighted = TRUE)

add betaNRI matrix to beta_diversity list

> datasetbeta_diversity\[\["betaNRI"\]\] \<- t1res_ses_betampd

create trans_beta class, use measure "betaNRI"

> t2 <- trans_beta$new(dataset = dataset, group = "Group", measure = "betaNRI")

transform the distance for each group

> t2$cal_group_distance()

plot the results

> g1 <- t2$plot_group_distance(distance_pair_stat = TRUE)

> g1 + geom_hline(yintercept = -2, linetype = 2) + geom_hline(yintercept = 2, linetype = 2)

这期跑的时间有些久,本来还想一起介绍trans_network class,后来发现trans_network class有的函数跑的更久,所以下期再介绍trans_network class。

相关推荐
开发者工具分享22 分钟前
用户调研样本不具代表性时怎么办
人工智能·数据挖掘
搞科研的小刘选手2 小时前
【多所高校合作】第四届图像处理、计算机视觉与机器学习国际学术会议(ICICML 2025)
图像处理·人工智能·机器学习·计算机视觉·数据挖掘·人脸识别·人机交互
人大博士的交易之路2 小时前
今日行情明日机会——20251104
大数据·数据挖掘·数据分析·缠论·涨停回马枪·道琼斯结构
蒋星熠4 小时前
多模态技术深度探索:融合视觉与语言的AI新范式
人工智能·python·深度学习·机器学习·分类·数据挖掘·多分类
甄心爱学习4 小时前
数据挖掘6-AI总结
人工智能·数据挖掘
小八四爱吃甜食6 小时前
【R语言】构建GO、KEGG相关不同物种的R包
开发语言·golang·r语言
api_180079054607 小时前
请求、认证与响应数据解析:1688 商品 API 接口深度探秘
java·大数据·开发语言·mysql·数据挖掘
梦想的初衷~18 小时前
生命周期评价(LCA):理论、方法与工具、典型案例全解析
r语言·农业·林业·环境科学·地理·气候变化·生命周期评价
sensen_kiss21 小时前
INT303 Big Data Analysis 大数据分析 Pt.3 数据挖掘(Data Mining)
大数据·数据挖掘·数据分析
算法与编程之美1 天前
探索不同的优化器对分类精度的影响和卷积层的输入输出的shape的计算公式
人工智能·深度学习·机器学习·分类·数据挖掘