R语言:microeco:一个用于微生物群落生态学数据挖掘的R包,第六:trans_nullmodel class

近几十年来,系统发育分析和零模型的整合通过增加系统发育维度,更有力地促进了生态位和中性影响对群落聚集的推断。trans_nullmodel类提供了一个封装,包括系统发育信号、beta平均成对系统发育距离(betaMPD)、beta平均最近分类单元距离(betaMNTD)、beta最近分类单元指数(betaNTI)、beta净相关指数(betaNRI)和基于bray - curtis的Raup-Crick (rbray)的计算。系统发育信号分析方法基于地幔相关图,与其他方法相比,系统发育信号的变化直观、清晰。betaMNTD和betaMPD的算法经过优化,比picante包中的算法更快。rbray和betaNTI(或betaNRI)的组合可以用来推断在特定假设下支配群落聚集的每个生态过程的强度。这可以通过函数cal_process()来解析每个推断进程的百分比来实现。我们首先检查系统发育信号。

> t1 <- trans_nullmodel$new(dataset, taxa_number = 1000, add_data = env_data_16S)

> t1$cal_mantel_corr(use_env = "pH")

> t1$plot_mantel_corr()

betaNRI(ses.betampd)用于显示"基础"系统发育转换, 与betaNTI相比,它可以捕获更多与深层系统发育相关的周转信息。

值得注意的是,随着几十年的发展,存在许多零模型。

在trans_nullmodel类中,我们随机化了物种的系统发育亲缘关系

这种洗牌方法固定了物种α-多样性和β-多样性的观察水平,

以探索观察到的系统发育转换是否与物种间系统发育亲缘关系随机的零模型有显著差异。

> t1$cal_ses_betampd(runs=500, abundance.weighted = TRUE)

add betaNRI matrix to beta_diversity list

> datasetbeta_diversity\[\["betaNRI"\]\] \<- t1res_ses_betampd

create trans_beta class, use measure "betaNRI"

> t2 <- trans_beta$new(dataset = dataset, group = "Group", measure = "betaNRI")

transform the distance for each group

> t2$cal_group_distance()

plot the results

> g1 <- t2$plot_group_distance(distance_pair_stat = TRUE)

> g1 + geom_hline(yintercept = -2, linetype = 2) + geom_hline(yintercept = 2, linetype = 2)

这期跑的时间有些久,本来还想一起介绍trans_network class,后来发现trans_network class有的函数跑的更久,所以下期再介绍trans_network class。

相关推荐
步、步、为营8 分钟前
.NET 8 Release Candidate 1 (RC1)现已发布,包括许多针对ASP.NET Core的重要改进!
r语言·asp.net·.net
Teacher.chenchong37 分钟前
现代R语言机器学习:Tidymodel/Tidyverse语法+回归/树模型/集成学习/SVM/深度学习/降维/聚类分类与科研绘图可视化
机器学习·回归·r语言
星座5281 小时前
基于现代R语言【Tidyverse、Tidymodel】的机器学习方法与案例分析
机器学习·r语言·tidyverse·tidymodel
wh_xia_jun14 小时前
基础分类模型及回归简介(一)
分类·数据挖掘·回归
Chef_Chen17 小时前
从0开始学习R语言--Day49--Lasso-Cox 回归
学习·回归·r语言
ClouGence1 天前
CloudCanal + Apache Paimon + StarRocks 实时构建湖仓一体架构
后端·数据挖掘·数据分析
SickeyLee1 天前
对比分析:给数据找个 “参照物”,让孤立数字变 “决策依据”
信息可视化·数据挖掘·数据分析
Rita的程序bug1 天前
R语言基础| 基本图形绘制(条形图、堆积图、分组图、填充条形图、均值条形图)
开发语言·信息可视化·r语言
李昊哲小课1 天前
K近邻算法的分类与回归应用场景
python·机器学习·分类·数据挖掘·回归·近邻算法·sklearn
摸鱼仙人~2 天前
现代人工智能综合分类:大模型时代的架构、模态与生态系统
人工智能·分类·数据挖掘