聊聊大模型微调训练全流程的思考

转载请注明出处:https://www.cnblogs.com/zhiyong-ITNote

参考现有的中文医疗模型:MedicalGPTCareGPT等领域模型的训练流程,结合ChatGPT的训练流程,总结如下:

在预训练阶段,模型会从大量无标注文本数据集中学习领域/通用知识;其次使用{有监督微调}(SFT)优化模型以更好地遵守特定指令;最后使用对齐技术使LLM更有用更安全的响应用户的提示。

训练流程的四个阶段,分别如下:

  1. 预训练(pre-training,pt),基于基座模型,经过海量中文医疗预料训练,得到领域适配的ChatGLM-6B。
  2. 监督微调(supervised finetuning,sft),通过在线问诊等数据,构建训练数据完成指令微调。
  3. RM模型构建(reward modeling, rm),人工对预测答案排序,训练一个打分模型
  4. 强化学习阶段(reinforcement learning, rl),基于PPO算法,采用RL的方式,完成fine-tuned ChatGLM-6B模型的优化。

预训练阶段-PT

该阶段的训练数据格式如下。对应是非结构化的自然语言文本,通过设定max_seq_len和block_size等方式,实现文本数据的chunk,batch化,作为模型的训练数据,处理完的单条数据包含input_ids,attention_mask和labels;训练的目标是模型需要根据提供的文本来预测 下一个单词。

监督微调阶段-SFT

该阶段的训练数据格式如下。一般对应的结构采用instruction/input/output/history,根据不同的场景,input与history可以做缺省处理。但是需要人工标注的指令数据集。

对齐

该阶段的主要目标是将语言模型喻人类的偏好、价值观进行对齐,这也是RHLF机制的作用。

RLHF主要包括两步:

  1. 基于有监督微调模型基础上创建一个reward model(RM)模型;
  2. 基于RM模型使用PPO/DPO算法微调SFT模型,返回最佳response。

奖励模型-RM

该阶段是RHLF的第一个阶段,训练得到一个rm模型用于rl阶段的模型打分,其结构格式如下:

有多种格式的数据,可自己选择,但需要程序做额外的处理,且这些数据都是人工标注好的。

强化学习-RL

该阶段是RHLF的第二个阶段,也是核心部分,用于优化一个RM模型,并完成打分。数据格式同SFT。一般在此阶段会使用特定的算法(DPO/PPO)来实现;引导优化后的大模型生成更符合人类偏好的内容。

总结

对于模型的微调,一开始我是想的太简单了,觉得只要按照基座官方模型文档调试即可;随着了解的深入与不断的学习,微调是个大工程而且对于领域模型来说,其训练流程:预训练 --> 监督微调 --> RHLF 中包含的事项与知识太多。

参考:【中文医疗大模型】训练全流程源码剖析

转载请注明出处:https://www.cnblogs.com/zhiyong-ITNote

首发于个人公众号

相关推荐
九年义务漏网鲨鱼8 小时前
【大模型学习】现代大模型架构(二):旋转位置编码和SwiGLU
深度学习·学习·大模型·智能体
GPUStack1 天前
GPUStack v2:推理加速释放算力潜能,开源重塑大模型推理下半场
大模型·vllm·ai网关·sglang·高性能推理
WWZZ20251 天前
快速上手大模型:深度学习13(文本预处理、语言模型、RNN、GRU、LSTM、seq2seq)
人工智能·深度学习·算法·语言模型·自然语言处理·大模型·具身智能
core5121 天前
不借助框架实现Text2SQL
sql·mysql·ai·大模型·qwen·text2sql
有点不太正常1 天前
《ShadowCoT: Cognitive Hijacking for Stealthy Reasoning Backdoors in LLMs》——论文阅读
论文阅读·大模型·agent安全
盼小辉丶1 天前
Transformer实战(27)——参数高效微调(Parameter Efficient Fine-Tuning,PEFT)
深度学习·transformer·模型微调
爬点儿啥1 天前
[Ai Agent] 09 LangGraph 进阶:构建可控、可协作的多智能体系统
人工智能·ai·langchain·大模型·agent·langgraph
WWZZ20252 天前
快速上手大模型:深度学习11(数据增强、微调、目标检测)
人工智能·深度学习·算法·目标检测·计算机视觉·大模型·具身智能
许泽宇的技术分享2 天前
从零到一,开源大模型的“民主化“之路:一份让AI触手可及的实战宝典
人工智能·开源·大模型
小小工匠3 天前
LLM - 大模型与计算机视觉融合:Skyvern核心技术架构揭秘
计算机视觉·大模型·skyvern