聊聊大模型微调训练全流程的思考

转载请注明出处:https://www.cnblogs.com/zhiyong-ITNote

参考现有的中文医疗模型:MedicalGPTCareGPT等领域模型的训练流程,结合ChatGPT的训练流程,总结如下:

在预训练阶段,模型会从大量无标注文本数据集中学习领域/通用知识;其次使用{有监督微调}(SFT)优化模型以更好地遵守特定指令;最后使用对齐技术使LLM更有用更安全的响应用户的提示。

训练流程的四个阶段,分别如下:

  1. 预训练(pre-training,pt),基于基座模型,经过海量中文医疗预料训练,得到领域适配的ChatGLM-6B。
  2. 监督微调(supervised finetuning,sft),通过在线问诊等数据,构建训练数据完成指令微调。
  3. RM模型构建(reward modeling, rm),人工对预测答案排序,训练一个打分模型
  4. 强化学习阶段(reinforcement learning, rl),基于PPO算法,采用RL的方式,完成fine-tuned ChatGLM-6B模型的优化。

预训练阶段-PT

该阶段的训练数据格式如下。对应是非结构化的自然语言文本,通过设定max_seq_len和block_size等方式,实现文本数据的chunk,batch化,作为模型的训练数据,处理完的单条数据包含input_ids,attention_mask和labels;训练的目标是模型需要根据提供的文本来预测 下一个单词。

监督微调阶段-SFT

该阶段的训练数据格式如下。一般对应的结构采用instruction/input/output/history,根据不同的场景,input与history可以做缺省处理。但是需要人工标注的指令数据集。

对齐

该阶段的主要目标是将语言模型喻人类的偏好、价值观进行对齐,这也是RHLF机制的作用。

RLHF主要包括两步:

  1. 基于有监督微调模型基础上创建一个reward model(RM)模型;
  2. 基于RM模型使用PPO/DPO算法微调SFT模型,返回最佳response。

奖励模型-RM

该阶段是RHLF的第一个阶段,训练得到一个rm模型用于rl阶段的模型打分,其结构格式如下:

有多种格式的数据,可自己选择,但需要程序做额外的处理,且这些数据都是人工标注好的。

强化学习-RL

该阶段是RHLF的第二个阶段,也是核心部分,用于优化一个RM模型,并完成打分。数据格式同SFT。一般在此阶段会使用特定的算法(DPO/PPO)来实现;引导优化后的大模型生成更符合人类偏好的内容。

总结

对于模型的微调,一开始我是想的太简单了,觉得只要按照基座官方模型文档调试即可;随着了解的深入与不断的学习,微调是个大工程而且对于领域模型来说,其训练流程:预训练 --> 监督微调 --> RHLF 中包含的事项与知识太多。

参考:【中文医疗大模型】训练全流程源码剖析

转载请注明出处:https://www.cnblogs.com/zhiyong-ITNote

首发于个人公众号

相关推荐
威化饼的一隅5 小时前
【多模态】swift-3框架使用
人工智能·深度学习·大模型·swift·多模态
伯牙碎琴7 小时前
智能体实战(需求分析助手)二、需求分析助手第一版实现(支持需求提取、整理、痛点分析、需求分类、优先级分析、需求文档生成等功能)
ai·大模型·agent·需求分析·智能体
聆思科技AI芯片9 小时前
实操给桌面机器人加上超拟人音色
人工智能·机器人·大模型·aigc·多模态·智能音箱·语音交互
zaim11 天前
计算机的错误计算(一百八十七)
人工智能·ai·大模型·llm·错误·正弦/sin·误差/error
Engineer-Yao1 天前
【win10+RAGFlow+Ollama】搭建本地大模型助手(教程+源码)
docker·大模型·win10·wsl·ollama·本地大模型·ragflow
AI程序猿人2 天前
三种Transformer模型中的注意力机制介绍及Pytorch实现:从自注意力到因果自注意力
人工智能·pytorch·深度学习·自然语言处理·大模型·transformer·llms
zaim12 天前
计算机的错误计算(一百八十六)
人工智能·python·ai·大模型·llm·误差·decimal
西西弗Sisyphus2 天前
使用Gradio编写大模型ollama客户端 -界面版
lora·大模型·transformer·qwen2-vl
静待缘起3 天前
【大模型】大模型项目选择 RAGvs微调?
大模型
李好秀3 天前
01.大模型起源与发展
大模型