【第三章】神经网络的架构-前馈神经网络

架构

在下一部分,我将介绍一个能够相当不错地对手写数字进行分类的神经网络。为了做好准备,有必要解释一些术语,这些术语让我们能够给网络的不同部分命名。假设我们有以下网络:

如前所述,这个网络中最左边的层被称为输入层,层内的神经元被称为输入神经元。最右边或输出层包含输出神经元,或者在这种情况下,一个单独的输出神经元。中间层被称为隐藏层,因为这一层中的神经元既不是输入也不是输出。术语"隐藏"可能听起来有点神秘 - 我第一次听到这个术语时以为它一定有一些深刻的哲学或数学意义 - 但它实际上只是意味着"既不是输入也不是输出"。上面的网络只有一个隐藏层,但有些网络有多个隐藏层。例如,下面的四层网络有两个隐藏层:

有点令人困惑是,也是出于历史原因,这种多层网络有时被称为多层感知器或MLP,尽管它们由Sigmoid神经元组成,而不是感知器。在本教程中,我不打算使用MLP术语,因为我认为它容易混淆,但我想提醒你它的存在。

神经网络中输入和输出层的设计通常是直接的。例如,假设我们试图确定一幅手写图像是否描绘了一个"9"。设计网络的一种自然方式是将图像像素的强度编码到输入神经元中。如果图像是一个64×64的灰度图像,那么我们将有4,096=64×64个输入神经元,其强度在0到1之间适当缩放。输出层将只包含一个神经元,其输出值小于0.5表示"输入图像不是9",大于0.5表示"输入图像是9"。

虽然神经网络的输入和输出层的设计通常是直接的,但是隐藏层的设计可能会有相当大的艺术性。特别是,不能用几个简单的经验法则总结出隐藏层的设计过程。相反,神经网络研究人员已经开发了许多隐藏层的设计启发式方法,这些方法帮助人们从网络中获得他们想要的行为。例如,这些启发式方法可以用来帮助确定如何权衡隐藏层数量与训练网络所需的时间。我们将在本教程的后面遇到几种这样的设计方法。

到目前为止,我们一直在讨论输出层的输出被用作下一层的输入的神经网络。这种网络称为前馈神经网络。这意味着网络中没有循环 - 信息总是向前传递,从不向后传递。如果我们有循环,我们将遇到σ函数的输入取决于输出的情况。那将很难理解,所以我们不允许这样的循环。

然而,还有其他模型的人工神经网络,其中可能存在反馈循环。这些模型被称为递归神经网络。这些模型的想法是有一些神经元在有限的时间内激活,然后变得静止。这种激活可以刺激其他神经元,在稍后的一段时间内也可能激活,同样也是在有限的时间内。这会导致更多的神经元激活,随着时间的推移,我们会得到一系列神经元的激活。在这种模型中,循环不会造成问题,因为神经元的输出只会在稍后的某个时间影响其输入,而不是瞬间影响。

与前馈网络相比,递归神经网络的影响力较小,部分原因是递归网络的学习算法(至少到目前为止)不那么强大。但是递归网络仍然非常有趣。它们在工作方式上更接近我们的大脑工作方式,而不是前馈网络。并且有可能递归网络可以解决只能通过前馈网络非常困难才能解决的重要问题。然而,为了限制我们的范围,在本教程中,我们将集中讨论更广泛使用的前馈网络。

相关推荐
2501_941418556 小时前
腰果病害图像识别 Mask-RCNN HRNetV2P实现 炭疽病 锈病 健康叶片分类
人工智能·分类·数据挖掘
skywalk81636 小时前
使用Trae 自动编程:为小学生学汉语项目增加不同出版社教材的区分
服务器·前端·人工智能·trae
Deepoch6 小时前
仓储智能化新思路:以“渐进式升级”破解物流机器人改造难题
大数据·人工智能·机器人·物流·具身模型·deepoc·物流机器人
智界前沿6 小时前
集之互动AIGC广告大片:以“高可控”技术重构品牌视觉想象
人工智能·重构·aigc
牛客企业服务6 小时前
AI面试选型策略:9大维度避坑指南
人工智能·面试·职场和发展
Yeats_Liao7 小时前
MindSpore开发之路(四):核心数据结构Tensor
数据结构·人工智能·机器学习
许泽宇的技术分享7 小时前
解密Anthropic的MCP Inspector:从协议调试到AI应用开发的全栈架构之旅
人工智能·架构·typescript·mcp·ai开发工具
nopSled7 小时前
AlphaAvatar:一个基于 LiveKit 的插件化实时 Omni-Avatar 架构
人工智能·语言模型
lovingsoft7 小时前
如何看自己笔记本是不是ARM64
人工智能·测试管理
美狐美颜sdk7 小时前
AI加持下的直播美颜sdk:动态贴纸功能的未来形态前瞻
人工智能·美颜sdk·直播美颜sdk·第三方美颜sdk·人脸美型sdk