pytorch升级打怪(六)

自动分化

torch.autograd

在训练神经网络时,最常用的算法是反向传播。在该算法中,根据损失函数相对于给定参数的梯度调整参数(模型权重)。

为了计算这些梯度,PyTorch内置了一个名为torch.autograd的分化引擎。它支持任何计算图的梯度自动计算。

考虑最简单的单层神经网络,具有输入x、参数w和b以及一些损失函数。它可以以以下方式在PyTorch中定义:

python 复制代码
import torch

x = torch.ones(5)  # input tensor
y = torch.zeros(3)  # expected output
w = torch.randn(5, 3, requires_grad=True)
b = torch.randn(3, requires_grad=True)
z = torch.matmul(x, w)+b
loss = torch.nn.functional.binary_cross_entropy_with_logits(z, y)

张量、函数和计算图

此代码定义了以下计算图:

在这个网络中,w和b是参数,我们需要对其进行优化。因此,我们需要能够计算相对于这些变量的损失函数梯度。为了做到这一点,我们设置了这些张量的requires_grad属性。

您可以在创建张量时设置requires_grad的值,或者稍后使用x.requires_grad_(True)方法。

python 复制代码
print(f"Gradient function for z = {z.grad_fn}")
print(f"Gradient function for loss = {loss.grad_fn}")
shell 复制代码
Gradient function for z = <AddBackward0 object at 0x13d5b0190>
Gradient function for loss = <BinaryCrossEntropyWithLogitsBackward0 object at 0x13d5b0190>

计算梯度

为了优化神经网络中参数的权重,我们需要计算损失函数相对于参数的导数,为了计算这些导数,我们调用loss.backward(),然后从w.grad和b.grad中检索值:

python 复制代码
loss.backward()
print(w.grad)
print(b.grad)
shell 复制代码
tensor([[0.1828, 0.0112, 0.3162],
        [0.1828, 0.0112, 0.3162],
        [0.1828, 0.0112, 0.3162],
        [0.1828, 0.0112, 0.3162],
        [0.1828, 0.0112, 0.3162]])
tensor([0.1828, 0.0112, 0.3162])

我们只能获得计算图的叶节点的grad属性,这些节点的requires_grad属性设置为True。对于我们图表中的所有其他节点,渐变将不可用。
出于性能原因,我们只能在给定的图表上向backward执行一次梯度计算。如果我们需要在同一图上进行几次backward调用,我们需要将retain_graph=True传递给向backward调用。

禁用梯度跟踪

默认情况下,所有具有requires_grad=True张量都在跟踪其计算历史并支持梯度计算。然而,在某些情况下,我们不需要这样做,例如,当我们训练了模型,只想将其应用于一些输入数据时,即我们只想通过网络进行前向计算。我们可以通过用torch.no_grad()块包围我们的计算代码来停止跟踪计算:

python 复制代码
z = torch.matmul(x, w)+b
print(z.requires_grad)

with torch.no_grad():
    z = torch.matmul(x, w)+b
print(z.requires_grad)
shell 复制代码
True
False

另一种实现相同结果的方法是在张量上使用detach()方法:

python 复制代码
z = torch.matmul(x, w)+b
z_det = z.detach()
print(z_det.requires_grad)
shell 复制代码
False

您可能想要禁用梯度跟踪是有原因的:

将神经网络中的一些参数标记为冻结参数。

当你只做正向传递时,为了加快计算速度,因为对不跟踪梯度的张量进行计算会更有效率。

相关推荐
摘星编程29 分钟前
OpenHarmony环境下React Native:Geolocation地理围栏
python
充值修改昵称1 小时前
数据结构基础:从二叉树到多叉树数据结构进阶
数据结构·python·算法
q_35488851533 小时前
AI大模型:python新能源汽车推荐系统 协同过滤推荐算法 Echarts可视化 Django框架 大数据毕业设计(源码+文档)✅
大数据·人工智能·python·机器学习·信息可视化·汽车·推荐算法
Yeats_Liao3 小时前
开源生态资源:昇腾社区ModelZoo与DeepSeek的最佳实践路径
python·深度学习·神经网络·架构·开源
被星1砸昏头3 小时前
掌握Python魔法方法(Magic Methods)
jvm·数据库·python
却道天凉_好个秋3 小时前
目标检测算法与原理(三):PyTorch实现迁移学习
pytorch·算法·目标检测
love530love4 小时前
彻底解决 ComfyUI Mixlab 插件 Whisper.available False 的报错
人工智能·windows·python·whisper·win_comfyui
不解风水4 小时前
《深度学习入门:基于 Python 的理论与实现》(斋藤康毅)
人工智能·python·深度学习
偷星星的贼114 小时前
数据分析与科学计算
jvm·数据库·python
Blossom.1185 小时前
AI Agent智能办公助手:从ChatGPT到真正“干活“的系统
人工智能·分布式·python·深度学习·神经网络·chatgpt·迁移学习