Machine Learning ---- Gradient Descent

目录

[一、The concept of gradient:](#一、The concept of gradient:)

[① In a univariate function:](#① In a univariate function:)

[②In multivariate functions:](#②In multivariate functions:)

[二、Introduction of gradient descent cases:](#二、Introduction of gradient descent cases:)

[三、Gradient descent formula and its simple understanding:](#三、Gradient descent formula and its simple understanding:)

[四、Formula operation precautions:](#四、Formula operation precautions:)


一、The concept of gradient:

In a univariate function

gradient is actually the differentiation of the function, representing the slope of the tangent of the function at a given point

In multivariate functions

a gradient is a vector with a direction, and the direction of the gradient indicates the direction in which the function rises the fastest at a given point

二、Introduction of gradient descent cases:

Do you remember the golf course inside the cat and mouse? It looks like this in the animation:

Let's take a look at these two pictures. You can easily see the distant hill, right? We can take it as the most typical example, and the golf course can also be abstracted into a coordinate map:

So in this coordinate, we will correspond the following (x, y) to (w, b) respectively. Then, when J (w, b) is at its maximum, which is the peak in the red area of the graph, we start the gradient descent process.

Firstly, we rotate one circle from the highest point to find the direction with the highest slope. At this point, we can take a small step down. The reason for choosing this direction is actually because it is the steepest direction. If we walk down the same step length, the height of descent will naturally be the highest, and we can also walk faster to the lowest point (local minimum point). At the same time, after each step, we look around and choose. Finally, we can determine this path:Finally reaching the local minimum point A, is this the only minimum point? Of course not:

It is also possible to reach point B, which is also a local minimum point. At this point, we have introduced the implementation process of gradient descent, and we will further understand its meaning through mathematical formulas.

三、Gradient descent formula and its simple understanding:

We first provide the formula for gradient descent:

In the formula, corresponds to what we call the learning rate, and the equal sign is the same as the assignment symbol in computer program code. J (w, b) can be found in the regression equation blog in the previous section. As for the determination of the learning rate, we will share it with you next time. Here, we will first understand the meaning of the formula:

Firstly, let's simplify the formula and takeb equal to 0as an example. This way, we can better understand its meaning through a two-dimensional Cartesian coordinate system:

In this J (w, b) coordinate graph, which is a quadratic function, since we consider b in the equation to be 0,So we can assume that = ,So, such a partial derivative can be seen as the derivative in the unary case. At this point, it can be seen that when >0 and the corresponding w value is in the right half, the derivative is positive, that is, its slope is positive. This is equivalent to subtracting a positive number from w, and its w point will move to the left, which is the closest to its minimum value, which is the optimal solution. Similarly, when in the left half of the function, its w will move to the right, which is close to the minimum value, So the step size for each movement is .

This is a simple understanding of the gradient descent formula.


四、Formula operation precautions:

This is a simple understanding of the gradient descent formula

just like this:

The following is an incorrect order of operations that shouldbe avoided:

This is the understanding of the formula and algorithm implementation for gradient descent. As for the code implementation, we will continue to explain it in future articles.

Machine Learning ---- Cost function-CSDN博客

相关推荐
SteveRocket12 分钟前
Python机器学习与数据分析教程之pandas
python·机器学习·数据分析
koo36443 分钟前
李宏毅机器学习笔记32
人工智能·笔记·机器学习
材料科学研究1 小时前
机器学习催化剂设计!
深度学习·机器学习·orr·催化剂·催化剂设计·oer
材料科学研究1 小时前
机器学习锂离子电池!预估电池!
深度学习·机器学习·锂离子电池·电池·电池健康·电池管理·电池寿命
长桥夜波1 小时前
机器学习日报04
人工智能·机器学习
Cathyqiii2 小时前
Diffusion-TS:一种基于季节性-趋势分解与重构引导的可解释时间序列扩散模型
人工智能·神经网络·1024程序员节
数字冰雹2 小时前
数字孪生技术 重构 智能仓储新生态
人工智能·重构
EasyCVR4 小时前
从汇聚到智能:解析视频融合平台EasyCVR视频智能分析技术背后的关键技术
大数据·人工智能
m0_650108244 小时前
【论文精读】GenTron:基于 Transformer 的扩散模型革新图像与视频生成
人工智能·论文精读·transformer扩散模型·文生图(t2i)·文生视频(t2v)
文火冰糖的硅基工坊4 小时前
[人工智能-大模型-66]:模型层技术 - 两种编程范式:数学函数式编程与逻辑推理式编程,构建起截然不同的智能系统。
人工智能·神经网络·算法·1024程序员节