Machine Learning ---- Gradient Descent

目录

[一、The concept of gradient:](#一、The concept of gradient:)

[① In a univariate function:](#① In a univariate function:)

[②In multivariate functions:](#②In multivariate functions:)

[二、Introduction of gradient descent cases:](#二、Introduction of gradient descent cases:)

[三、Gradient descent formula and its simple understanding:](#三、Gradient descent formula and its simple understanding:)

[四、Formula operation precautions:](#四、Formula operation precautions:)


一、The concept of gradient:

In a univariate function

gradient is actually the differentiation of the function, representing the slope of the tangent of the function at a given point

In multivariate functions

a gradient is a vector with a direction, and the direction of the gradient indicates the direction in which the function rises the fastest at a given point

二、Introduction of gradient descent cases:

Do you remember the golf course inside the cat and mouse? It looks like this in the animation:

Let's take a look at these two pictures. You can easily see the distant hill, right? We can take it as the most typical example, and the golf course can also be abstracted into a coordinate map:

So in this coordinate, we will correspond the following (x, y) to (w, b) respectively. Then, when J (w, b) is at its maximum, which is the peak in the red area of the graph, we start the gradient descent process.

Firstly, we rotate one circle from the highest point to find the direction with the highest slope. At this point, we can take a small step down. The reason for choosing this direction is actually because it is the steepest direction. If we walk down the same step length, the height of descent will naturally be the highest, and we can also walk faster to the lowest point (local minimum point). At the same time, after each step, we look around and choose. Finally, we can determine this path:Finally reaching the local minimum point A, is this the only minimum point? Of course not:

It is also possible to reach point B, which is also a local minimum point. At this point, we have introduced the implementation process of gradient descent, and we will further understand its meaning through mathematical formulas.

三、Gradient descent formula and its simple understanding:

We first provide the formula for gradient descent:

In the formula, corresponds to what we call the learning rate, and the equal sign is the same as the assignment symbol in computer program code. J (w, b) can be found in the regression equation blog in the previous section. As for the determination of the learning rate, we will share it with you next time. Here, we will first understand the meaning of the formula:

Firstly, let's simplify the formula and takeb equal to 0as an example. This way, we can better understand its meaning through a two-dimensional Cartesian coordinate system:

In this J (w, b) coordinate graph, which is a quadratic function, since we consider b in the equation to be 0,So we can assume that = ,So, such a partial derivative can be seen as the derivative in the unary case. At this point, it can be seen that when >0 and the corresponding w value is in the right half, the derivative is positive, that is, its slope is positive. This is equivalent to subtracting a positive number from w, and its w point will move to the left, which is the closest to its minimum value, which is the optimal solution. Similarly, when in the left half of the function, its w will move to the right, which is close to the minimum value, So the step size for each movement is .

This is a simple understanding of the gradient descent formula.


四、Formula operation precautions:

This is a simple understanding of the gradient descent formula

just like this:

The following is an incorrect order of operations that shouldbe avoided:

This is the understanding of the formula and algorithm implementation for gradient descent. As for the code implementation, we will continue to explain it in future articles.

Machine Learning ---- Cost function-CSDN博客

相关推荐
gooxi_hui7 分钟前
8卡直连,Turin加持!国鑫8U8卡服务器让生成式AI落地更近一步
大数据·人工智能
范男22 分钟前
YOLO11目标检测运行推理简约GUI界面
图像处理·人工智能·yolo·计算机视觉·视觉检测
搜搜秀25 分钟前
内存传输速率MT/s
人工智能·自然语言处理·机器翻译
向成科技1 小时前
XC3588N工控主板助力电力巡检机器人
人工智能·rk3588·安卓·硬件·工控主板·主板
taxunjishu1 小时前
DeviceNet 转 EtherCAT:发那科焊接机器人与倍福 CX5140 在汽车焊装线的高速数据同步通讯配置案例
人工智能·区块链·工业物联网·工业自动化·总线协议
sali-tec1 小时前
C# 基于halcon的视觉工作流-章33-矩状测量
开发语言·人工智能·算法·计算机视觉·c#
格林威2 小时前
短波红外相机在机器视觉检测方向的应用
运维·人工智能·深度学习·数码相机·计算机视觉·视觉检测
这儿有一堆花2 小时前
DeepSeek-VL 解析:混合视觉-语言模型如何超越传统计算机视觉方法
人工智能·计算机视觉·语言模型
model20052 小时前
ubuntu24.04+5070ti训练yolo模型(2)
人工智能·yolo
CV-杨帆2 小时前
论文阅读:openai 2025 Why Language Models Hallucinate
论文阅读·人工智能·语言模型