(done) 什么是词嵌入技术?word embedding ?(这里没有介绍词嵌入算法)(没有提到嵌入矩阵如何得到)

参考视频:https://www.bilibili.com/video/BV1sw411S7i1/?spm_id_from=333.788\&vd_source=7a1a0bc74158c6993c7355c5490fc600


词嵌入(word embedding):把词汇表中的词或短语 -------- 映射 ----> 固定长度向量

我们可以把 one-hot 编码表示的 高维稀疏向量 -------- 转化 ---------> 低维连续向量

使用低维连续向量的好处是:

1.节省存储空间和计算成本

2.可以更好地表示不同单词之间的关系

如下图,我们可以使用降维算法,把词嵌入向量(word embedding vectors) 映射到二维平面上

词嵌入向量不仅可以表达语义的相似性,还能通过向量的数学关系描述词语之间的词语关联

通过特定的词嵌入算法 (如 word2vec, fasttext, glove 等),我们能够训练一个通用的嵌入矩阵

如下图,矩阵中的每一行都代表了一个词向量

这些词向量是通用的,它们一旦训练完成,就可以用在不同的 NLP 任务中

如下图,嵌入矩阵的行,就是语料库(词汇表, vocab) 中词语的个数,矩阵的列是词语的维度

接下来我们用一个具体的例子,来说明词嵌入的过程

首先我们需要一个 "已经训练好的" 嵌入矩阵 E

这个矩阵大小是 5000 x 128

5000 表示语料库/词汇表中有 5000 个单词

128 表示每个 单词矢量 的维度是 128 维

如下图表示

接下来我们看一句话 "我喜欢数学",我们的目的是把这句话里的每个词,都表示成一个 128 维的向量

接下来进行

1.切词,把这句话里的所有词语切出来

2.查询词汇表,根据词汇表,查找出这些词语的 one-hot 编码

3.组成矩阵 V,把那些 one-hot 编码矢量组合成一个 4 x 5000 的矩阵 V

接下来使用 V x E,可以得到这四个词语的 "嵌入向量" (embedding vectors)

词嵌入的优势是什么?

1.储存维度降低、计算成本降低

2.语义相似的词语在向量空间上更相近

3.one-hot编码不具有通用性,而嵌入矩阵是通用的,同一份词向量,可以用在不同的 NLP 任务中


相关推荐
铸人10 小时前
再论自然数全加和 - 欧拉伽马常数4
算法
prince_zxill11 小时前
探索Nautilus Trader:高性能算法交易平台与事件驱动回测引擎的全面指南
算法
进击的荆棘11 小时前
算法——二分查找
c++·算法·leetcode
识君啊11 小时前
Java 滑动窗口 - 附LeetCode经典题解
java·算法·leetcode·滑动窗口
烟花落o11 小时前
【数据结构系列02】轮转数组、返回倒数第k个节点
数据结构·算法·leetcode·刷题
努力也学不会java11 小时前
【Spring Cloud】统一服务入口-Gateway
后端·算法·spring·spring cloud·gateway·服务发现
追随者永远是胜利者11 小时前
(LeetCode-Hot100)3. 无重复字符的最长子串
java·算法·leetcode·职场和发展·go
Lenyiin11 小时前
《LeetCode 顺序刷题》11 -20
java·c++·python·算法·leetcode·lenyiin
乌萨奇也要立志学C++11 小时前
【洛谷】从记忆化搜索到动态规划 状态表示 + 转移方程 + 空间优化全攻略
算法·动态规划
Bear on Toilet12 小时前
递归_二叉树_48 . 二叉树最近公共祖先查找
数据结构·算法·二叉树·dfs