【目标跟踪】【MMTracking的部署与开发】01 安装与部署

1.准备

• Linux | macOS | Windows

• Python 3.6+

• PyTorch 1.3+

• CUDA 9.2+ (If you build PyTorch from source, CUDA 9.0 is also compatible)

• GCC 5+

• MMCV

• MMDetection

兼容的MMTracking、MMCV和MMDetection版本如下所示。请安装正确的版本,以避免出现安装问题。

MMCV:
MMCV

MMDetection:
MMDetection:

2.安装

2.1 安装细节

官方文档上有个推荐的教程,我参考这个教程,结合网上其他的教程,自己在Linux服务器上面成果部署了一套环境

1.创建虚拟环境并激活

python 复制代码
conda create -n open-mmlab python=3.9 -y
conda activate open-mmlab

2.安装Pytorch

注意要安装与自己电脑CUDA版本对应的Pytorch

对于CUDA11.X版本的 我建立安装Pytorch的1.8版本或者1.7

如果CUDA是10.X版本的,官方文档上建议安装1.5版本的Pytorch

python 复制代码
# CUDA 11.3
conda install pytorch==1.10.0 torchvision==0.11.0 torchaudio==0.10.0 cudatoolkit=11.3 -c pytorch -c conda-forge

上面的代码是去Pytorch官网上找的,

找到官网首页

添加链接描述

点击Previous versions of Pytorch

就可以根据自己操作系统和CUDA的版本情况来选择对应的Pytorch的安装指令

3.安装VOT视频目标跟踪评估需要的依赖库(这个是可选的)

如果您需要评估VOT挑战,请在安装mmcv和mmdetection之前安装虚拟工具包,以避免某些依赖项之间可能存在的numpy版本需求冲突

python 复制代码
pip install git+https://github.com/votchallenge/toolkit.git

4.安装mmcv-full

推荐采用以下的安装方式:

python 复制代码
# pip install mmcv-full -f https://download.openmmlab.com/mmcv/dist/{cu_version}/{torch_version}/index.html

cu_version是CUDA的版本,torch_version是Pytorch的版本

比如我的CUDA的版本是11.3,我的Pytorch的版本是1.10

我的mmcv-full的安装指定就是:

python 复制代码
pip install mmcv-full==1.7.0 -f https://download.openmmlab.com/mmcv/dist/cu113/torch1.10.0/index.html

在这里我指定了mmcv-full的安装版本是1.7.0,我推荐使用1.5.0-2.0.0之间的版本

5.安装MMDetection

有两种安装方法:

一种是直接安装,或者先安装mim

python 复制代码
pip install openmim
mim install mmdet==2.25.1

2.25.1是mmdetection的版本号,这个mmcv mmdetection和mmtracking之间都存在着版本兼容关系,建议大家查一下。

另外一种就是git clone

python 复制代码
git clone https://github.com/open-mmlab/mmdetection.git
cd mmdetection
pip install -r requirements/build.txt
pip install -v -e .
# or "python setup.py develop"

6.git clone MMtracking

python 复制代码
git clone https://github.com/open-mmlab/mmtracking.git
cd mmtracking

7.安装MMtracking

python 复制代码
pip install -r requirements/build.txt
pip install -v -e .
# or "python setup.py develop"

8.安装额外的依赖库

对于MOTChallenge任务

python 复制代码
pip install git+https://github.com/JonathonLuiten/TrackEval.git

对于LVIS evaluation

python 复制代码
pip install git+https://github.com/lvis-dataset/lvis-api.git

对于TAO evaluation:

python 复制代码
pip install git+https://github.com/TAO-Dataset/tao.git

需要说明的是,按照上述说明,MMTracking安装在开发模式下,对代码进行的任何本地修改都将生效,无需重新安装。

也就是说这样安装的话可以直接在上面做自己的修改

相关推荐
新智元8 分钟前
收手吧 GPT-5-Codex,外面全是 AI 编程智能体!
人工智能·openai
IT_陈寒12 分钟前
Java 性能优化:5个被低估的JVM参数让你的应用吞吐量提升50%
前端·人工智能·后端
阿里云云原生42 分钟前
阿里云基础设施 AI Tech Day AI 原生,智构未来——AI 原生架构与企业实践专场
人工智能
Memene摸鱼日报2 小时前
「Memene 摸鱼日报 2025.9.16」OpenAI 推出 GPT-5-Codex 编程模型,xAI 发布 Grok 4 Fast
人工智能·aigc
xiaohouzi1122332 小时前
OpenCV的cv2.VideoCapture如何加GStreamer后端
人工智能·opencv·计算机视觉
用户125205597082 小时前
解决Stable Diffusion WebUI训练嵌入式模型报错问题
人工智能
Juchecar2 小时前
一文讲清 nn.LayerNorm 层归一化
人工智能
martinzh2 小时前
RAG系统大脑调教指南:模型选择、提示设计与质量控保一本通
人工智能
小关会打代码2 小时前
计算机视觉案例分享之答题卡识别
人工智能·计算机视觉
Juchecar2 小时前
一文讲清 nn.Linear 线性变换
人工智能