Pytorch DataLoader 提高模型训练时的 Volatile Gpu-Util(GPU利用率)

文章目录

  • [1. 查看GPU显存占比和利用率](#1. 查看GPU显存占比和利用率)
  • [2. Pytorch 提高 GPU 利用率的方法](#2. Pytorch 提高 GPU 利用率的方法)

1. 查看GPU显存占比和利用率

python 复制代码
watch -n 0.2 nvidia-smi

0.2 代表每隔 0.2 秒刷新一次 GPU 使用情况

通过调整 batch_size 可以使 Memory-Usage(GPU显存占比)尽可能高;但Volatile Gpu-Util(GPU利用率)通常在 0 ~ 100% 之间动态变化,因为 GPU 用于网络中的矩阵运算,但数据集是从 CPU 中加载的。所以在网络训练时 Gpu-Util 高,数据加载时 Gpu-Util 低。

2. Pytorch 提高 GPU 利用率的方法

如上图的绿色框所示,Gpu-Util 是动态变化的。但如果出现 GPU 显存占用很高,模型也在 cuda 上面执行,但训练速度很慢,且 Gpu-Util 很低的情况; 可能原因是 CPU 的数据加载太慢,尤其是在多卡服务器中,多个程序同时执行,这个问题会更加严重。

此时应该在 Pytorch 的 DataLoader 中设置 "pin_memory=True",以及num_workers 参数:

python 复制代码
from torch.utils.data import DataLoader
train_dataloader = DataLoader(dataset, batch_size, pin_memory=True, num_workers=4)
  • pin_memory 用于设置是否在 dataloader 返回数据之前将 Tensors 复制到 device/CUDA 中,默认为 False。其作用是锁页内存,将数据存储在的固定内存页上,不与硬盘进行内存交换,从而提高将数据从 CPU 传输到 GPU 的效率。
  • num_workers 用于设置加载数据的多进程的数量,默认为 0。在 windows 系统下可能只能设置为 0,在 linux 中可以设置为大于 1 的数,具体设置与服务器的 CPU 数量、batch_size 等参数有关。

Pytorch DataLoader class 官方介绍:torch.utils.data.DataLoader

实际使用中,在 batch_size=32 时,设置 pin_memory=True 和 num_workers=4 的训练速度是设置 pin_memory=False和 num_workers=0 的 40 倍。

相关推荐
之歆几秒前
Spring AI入门到实战到原理源码-多模型协作智能客服系统
java·人工智能·spring
vyuvyucd几秒前
手机自动化控制:Python+uiautomator2教程
python
love_summer1 分钟前
深入理解Python控制流:for/while循环的底层逻辑与最佳实践
python
沫儿笙8 分钟前
CLOOS克鲁斯焊接机器人混合气节气装置
人工智能·机器人
一只落魄的蜂鸟9 分钟前
【2026年-01期】AI Agent Trends of 2025
人工智能
Deepoch10 分钟前
从“机械臂”到“农艺手”:Deepoc如何让机器人理解果实的生命语言
人工智能·机器人·采摘机器人·农业机器人·具身模型·deepoc
BEOL贝尔科技11 分钟前
生物冰箱智能锁如何帮助实验室做好生物样本保存工作的权限管理呢?
人工智能·数据分析
dundunmm15 分钟前
【每天一个知识点】模式识别与群体智慧:AI 如何从“看见数据”走向“理解世界”
人工智能·群体智能·模式识别
落羽凉笙17 分钟前
Python基础(4)| 玩转循环结构:for、while与嵌套循环全解析(附源码)
android·开发语言·python
hkNaruto17 分钟前
【AI】AI学习笔记:关于嵌入模型的切片大小,实际的业务系统中如何选择
人工智能·笔记·学习