Pytorch DataLoader 提高模型训练时的 Volatile Gpu-Util(GPU利用率)

文章目录

  • [1. 查看GPU显存占比和利用率](#1. 查看GPU显存占比和利用率)
  • [2. Pytorch 提高 GPU 利用率的方法](#2. Pytorch 提高 GPU 利用率的方法)

1. 查看GPU显存占比和利用率

python 复制代码
watch -n 0.2 nvidia-smi

0.2 代表每隔 0.2 秒刷新一次 GPU 使用情况

通过调整 batch_size 可以使 Memory-Usage(GPU显存占比)尽可能高;但Volatile Gpu-Util(GPU利用率)通常在 0 ~ 100% 之间动态变化,因为 GPU 用于网络中的矩阵运算,但数据集是从 CPU 中加载的。所以在网络训练时 Gpu-Util 高,数据加载时 Gpu-Util 低。

2. Pytorch 提高 GPU 利用率的方法

如上图的绿色框所示,Gpu-Util 是动态变化的。但如果出现 GPU 显存占用很高,模型也在 cuda 上面执行,但训练速度很慢,且 Gpu-Util 很低的情况; 可能原因是 CPU 的数据加载太慢,尤其是在多卡服务器中,多个程序同时执行,这个问题会更加严重。

此时应该在 Pytorch 的 DataLoader 中设置 "pin_memory=True",以及num_workers 参数:

python 复制代码
from torch.utils.data import DataLoader
train_dataloader = DataLoader(dataset, batch_size, pin_memory=True, num_workers=4)
  • pin_memory 用于设置是否在 dataloader 返回数据之前将 Tensors 复制到 device/CUDA 中,默认为 False。其作用是锁页内存,将数据存储在的固定内存页上,不与硬盘进行内存交换,从而提高将数据从 CPU 传输到 GPU 的效率。
  • num_workers 用于设置加载数据的多进程的数量,默认为 0。在 windows 系统下可能只能设置为 0,在 linux 中可以设置为大于 1 的数,具体设置与服务器的 CPU 数量、batch_size 等参数有关。

Pytorch DataLoader class 官方介绍:torch.utils.data.DataLoader

实际使用中,在 batch_size=32 时,设置 pin_memory=True 和 num_workers=4 的训练速度是设置 pin_memory=False和 num_workers=0 的 40 倍。

相关推荐
孔丘闻言1 分钟前
关于 Flask 3.0+的 框架的一些复习差异点
python·adb·flask
ankleless1 分钟前
Python 数据可视化:Matplotlib 与 Seaborn 实战
开发语言·python
dundunmm4 分钟前
【论文阅读】SIMBA: single-cell embedding along with features(2)
论文阅读·人工智能·embedding·生物信息·单细胞·多组学·细胞类型识别
金井PRATHAMA25 分钟前
意象框架:连接感知与认知的统一信息结构分析——基于上古汉语同源词意义系统的词源学与认知语言学探索
人工智能·自然语言处理
聚客AI32 分钟前
🧠深度解析模型压缩革命:减枝、量化、知识蒸馏
人工智能·深度学习·llm
SHIPKING39339 分钟前
【机器学习&深度学习】Ollama、vLLM、LMDeploy对比:选择适合你的 LLM 推理框架
人工智能·深度学习·机器学习
witkey_ak989643 分钟前
python 可迭代对象相关知识点
开发语言·python
站大爷IP1 小时前
Python生成器与迭代器:从内存优化到协程调度的深度实践
python
zzywxc7871 小时前
AI 行业应用:金融、医疗、教育、制造业领域的落地案例与技术实现
android·前端·人工智能·chrome·金融·rxjava
新智元1 小时前
刚刚,GPT-5 Pro 自证全新数学定理!OpenAI 总裁直呼颠覆,大佬们集体转发
人工智能·openai