深度学习常见的三种模型

深度学习模型实际上是一个包含多个隐藏层的神经网络,目前主要有卷积神经网络(CNN)、深度置信网络(DBN)、循环神经网络(RNN)。

  1. 卷积神经网络

在机器学习领域,卷积神经网络属于前馈神经网络的一种。不同于传统的全连接神经网络结构,卷积神经网络引入了局部感受区域的策略,如处理图像任务时,利用图像数据的空间结构以及邻近像素间的相关性。这使得单个神经元仅对局部信息进行响应,相邻神经元的感受区域存在重叠。

此外,在卷积层中,所有神经元共享同一个卷积核,从而显著减少了训练参数的数量,提高了网络的泛化能力。通常在卷积层后面会进行降采样操作,对提取的特征进行聚合统计,以进一步减少参数数量并增强网络的泛化能力。

  1. 深度置信网络

深度置信网络是一种生成模型,具有若干隐藏层。其内部神经元在同一隐藏层中没有连接,但隐藏层之间的神经元却是全连接的。通过逐层无监督学习,神经网络可以较好地对输入数据进行描述,并最终可被转换成深度神经网络用于分类任务。该网络可用于图像识别、图像生成等领域,也支持无监督或半监督学习,利用无标记数据进行预训练以提高神经网络性能。

  1. 循环神经网络

循环神经网络是专门用于处理时序数据的神经网络,与典型的前馈型神经网络最大的不同在于网络内存在环形结构。隐藏层内部的神经元互相连接,可以存储网络的内部状态,并且包含序列输入的历史信息,以实现对时序动态行为的描述。

循环神经网络可用于机器翻译、连写手写字识别、语音识别等任务。结合卷积神经网络和循环神经网络,可以实现对图像内容的检测、物体识别以及对图像内容的描述生成。

相关推荐
Robot侠1 分钟前
多模态大语言模型(Multimodal LLM)技术实践指南
人工智能·语言模型·自然语言处理·transformer·rag·多模态大模型
roman_日积跬步-终至千里13 分钟前
【计算机视觉概述】:从像素到理解的完整图景
人工智能·计算机视觉
Light6026 分钟前
【MCP原生时代】第7篇|治理与合规:在模型驱动自动化中把控法律、隐私与伦理风险——把“能做什么”变成可审计、可解释、可追责的企业能力
人工智能·隐私·审计·治理·合规·mcp·伦理
Coder_Boy_31 分钟前
业务导向型技术日志记录(2)
java·人工智能·驱动开发·微服务
海边夕阳200642 分钟前
【每天一个AI小知识】:什么是多模态学习?
人工智能·深度学习·机器学习·计算机视觉·语言模型·自然语言处理
老艾的AI世界43 分钟前
最新AI幻脸软件,全面升级可直播,Mirage下载介绍(支持cpu)
图像处理·人工智能·深度学习·神经网络·目标检测·ai
凤希AI伴侣1 小时前
架构重构与AI能力聚焦:一人开发的自动化未来 凤希AI伴侣 · 开发日记 · 2025年12月20日
人工智能·重构·自动化·凤希ai伴侣
攻城狮7号1 小时前
微软开源 TRELLIS.2:单图 3 秒变 3D?
人工智能·3d·trellis.2·o-voxel·sc-vae·微软开源模型
运维@小兵1 小时前
Spring AI系列——开发MCP Server和MCP Client(SSE方式)
java·人工智能·spring
free-elcmacom1 小时前
机器学习高阶教程<8>分布式训练三大核心策略拆解
人工智能·分布式·python·机器学习