深度学习常见的三种模型

深度学习模型实际上是一个包含多个隐藏层的神经网络,目前主要有卷积神经网络(CNN)、深度置信网络(DBN)、循环神经网络(RNN)。

  1. 卷积神经网络

在机器学习领域,卷积神经网络属于前馈神经网络的一种。不同于传统的全连接神经网络结构,卷积神经网络引入了局部感受区域的策略,如处理图像任务时,利用图像数据的空间结构以及邻近像素间的相关性。这使得单个神经元仅对局部信息进行响应,相邻神经元的感受区域存在重叠。

此外,在卷积层中,所有神经元共享同一个卷积核,从而显著减少了训练参数的数量,提高了网络的泛化能力。通常在卷积层后面会进行降采样操作,对提取的特征进行聚合统计,以进一步减少参数数量并增强网络的泛化能力。

  1. 深度置信网络

深度置信网络是一种生成模型,具有若干隐藏层。其内部神经元在同一隐藏层中没有连接,但隐藏层之间的神经元却是全连接的。通过逐层无监督学习,神经网络可以较好地对输入数据进行描述,并最终可被转换成深度神经网络用于分类任务。该网络可用于图像识别、图像生成等领域,也支持无监督或半监督学习,利用无标记数据进行预训练以提高神经网络性能。

  1. 循环神经网络

循环神经网络是专门用于处理时序数据的神经网络,与典型的前馈型神经网络最大的不同在于网络内存在环形结构。隐藏层内部的神经元互相连接,可以存储网络的内部状态,并且包含序列输入的历史信息,以实现对时序动态行为的描述。

循环神经网络可用于机器翻译、连写手写字识别、语音识别等任务。结合卷积神经网络和循环神经网络,可以实现对图像内容的检测、物体识别以及对图像内容的描述生成。

相关推荐
AI绘画哇哒哒31 分钟前
【收藏必看】大模型智能体六大设计模式详解:从ReAct到Agentic RAG,构建可靠AI系统
人工智能·学习·ai·语言模型·程序员·产品经理·转行
CNRio1 小时前
人工智能基础架构与算力之3 Transformer 架构深度解析:从注意力机制到算力适配演进
人工智能·深度学习·transformer
qy-ll1 小时前
深度学习——CNN入门
人工智能·深度学习·cnn
青瓷程序设计5 小时前
动物识别系统【最新版】Python+TensorFlow+Vue3+Django+人工智能+深度学习+卷积神经网络算法
人工智能·python·深度学习
F_D_Z5 小时前
数据集相关类代码回顾理解 | sns.distplot\%matplotlib inline\sns.scatterplot
python·深度学习·matplotlib
金智维科技官方6 小时前
RPA财务机器人为企业高质量发展注入动能
人工智能·机器人·rpa·财务
沫儿笙6 小时前
安川机器人tag焊接怎么节省保护气
人工智能·物联网·机器人
2501_941147426 小时前
人工智能赋能智慧教育互联网应用:智能学习与教育管理优化实践探索》
人工智能
阿龙AI日记7 小时前
详解Transformer04:Decoder的结构
人工智能·深度学习·自然语言处理
爱写代码的小朋友7 小时前
“数字镜像”与认知负能者:生成式AI个性化学习支持者的协同构建与伦理规制研究
人工智能