量子计算中的线性代数工具

量子计算中的线性代数工具

给定一个 n n n 维 ket 的集合 { ∣ b 1 ⟩ , ∣ b 2 ⟩ , ⋅ ⋅ ⋅ , ∣ b n ⟩ } \{|b_1\rangle, |b_2\rangle, ···, |b_n\rangle\} {∣b1⟩,∣b2⟩,⋅⋅⋅,∣bn⟩}, 检验它是否构成一组标准正交基

解决办法:

首先构建 A = [ ∣ b 1 ⟩ ∣ b 2 ⟩ ⋅ ⋅ ⋅ ∣ b n ⟩ ] A=[|b_1\rangle |b_2\rangle ··· |b_n\rangle] A=[∣b1⟩∣b2⟩⋅⋅⋅∣bn⟩] , 然后计算 A T A A^TA ATA.

如果结果是单位矩阵, 他就是一组标准正交基, 否则不是.

给定一组标准正交基 { ∣ b 1 ⟩ , ∣ b 2 ⟩ , ⋅ ⋅ ⋅ , ∣ b n ⟩ } \{|b_1\rangle, |b_2\rangle, ···, |b_n\rangle\} {∣b1⟩,∣b2⟩,⋅⋅⋅,∣bn⟩} 和一个 ket ∣ v ⟩ |v\rangle ∣v⟩, 将这个ket表示成基向量的线性组合, 也就是说解方程 ∣ v ⟩ = x 1 ∣ b 1 ⟩ + x 2 ∣ b 2 ⟩ + ⋅ ⋅ ⋅ + x i ∣ b i ⟩ + ⋅ ⋅ ⋅ + x n ∣ b n ⟩ |v\rangle=x_1|b_1\rangle+x_2|b_2\rangle+···+x_i|b_i\rangle+···+x_n|b_n\rangle ∣v⟩=x1∣b1⟩+x2∣b2⟩+⋅⋅⋅+xi∣bi⟩+⋅⋅⋅+xn∣bn⟩

解决办法:

构建 A = [ ∣ b 1 ⟩ ∣ b 2 ⟩ ⋅ ⋅ ⋅ ∣ b n ⟩ ] A=[|b_1\rangle |b_2\rangle ··· |b_n\rangle] A=[∣b1⟩∣b2⟩⋅⋅⋅∣bn⟩] , 那么

x 1 x 2 ... x n \] = A T ∣ v ⟩ = \[ ⟨ b 1 ∣ v ⟩ ⟨ b 2 ∣ v ⟩ ... ⟨ b n ∣ v ⟩ \] \\begin{bmatrix}x_1\\\\x_2\\\\...\\\\x_n\\end{bmatrix}=A\^T\|v\\rangle=\\begin{bmatrix}\\langle b_1\|v \\rangle\\\\\\langle b_2\|v \\rangle\\\\...\\\\\\langle b_n\|v \\rangle\\end{bmatrix} x1x2...xn =AT∣v⟩= ⟨b1∣v⟩⟨b2∣v⟩...⟨bn∣v⟩ ###### 给定一组标准正交基 { ∣ b 1 ⟩ , ∣ b 2 ⟩ , ⋅ ⋅ ⋅ , ∣ b n ⟩ } \\{\|b_1\\rangle, \|b_2\\rangle, ···, \|b_n\\rangle\\} {∣b1⟩,∣b2⟩,⋅⋅⋅,∣bn⟩} 和 ∣ v ⟩ = c 1 ∣ b 1 ⟩ + c 2 ∣ b 2 ⟩ + ⋅ ⋅ ⋅ + c i ∣ b i ⟩ + ⋅ ⋅ ⋅ + c n ∣ b n ⟩ \|v\\rangle=c_1\|b_1\\rangle+c_2\|b_2\\rangle+···+c_i\|b_i\\rangle+···+c_n\|b_n\\rangle ∣v⟩=c1∣b1⟩+c2∣b2⟩+⋅⋅⋅+ci∣bi⟩+⋅⋅⋅+cn∣bn⟩, 求 ∣ v ⟩ \|v\\rangle ∣v⟩ 的长度 **解决办法**: 使用 ∣ ∣ v ⟩ ∣ 2 = c 1 2 + c 2 2 + ⋅ ⋅ ⋅ + c i 2 + ⋅ ⋅ ⋅ c n 2 \|\|v\\rangle\|\^2=c_1\^2+c_2\^2+···+c_i\^2+···c_n\^2 ∣∣v⟩∣2=c12+c22+⋅⋅⋅+ci2+⋅⋅⋅cn2 摘自: 《人人可懂的量子计算》

相关推荐
ECT-OS-JiuHuaShan2 天前
否定之否定的辩证法,谁会不承认?但又有多少人说的透?
开发语言·人工智能·数学建模·生活·学习方法·量子计算·拓扑学
2501_941871454 天前
量子计算的崛起:引领未来科技的突破性力量
量子计算
jiushun_suanli4 天前
量子纠缠:颠覆认知的宇宙密码
经验分享·学习·量子计算
2501_941146704 天前
量子计算:破解未来科技瓶颈的关键
量子计算
2501_941884615 天前
量子计算:未来计算革命的前景与挑战
量子计算
2501_941801765 天前
量子计算的未来:如何改变科技与社会的面貌
量子计算
2501_941623325 天前
量子计算的崛起:下一代技术革命的前奏
量子计算
2501_941404315 天前
量子计算与未来科技:颠覆性的技术进展与挑战
量子计算
2501_941149795 天前
量子计算:从理论到实践的科技革命
量子计算
2501_941805935 天前
量子计算:破解传统计算瓶颈,开创计算新时代
量子计算