量子计算中的线性代数工具

量子计算中的线性代数工具

给定一个 n n n 维 ket 的集合 { ∣ b 1 ⟩ , ∣ b 2 ⟩ , ⋅ ⋅ ⋅ , ∣ b n ⟩ } \{|b_1\rangle, |b_2\rangle, ···, |b_n\rangle\} {∣b1⟩,∣b2⟩,⋅⋅⋅,∣bn⟩}, 检验它是否构成一组标准正交基

解决办法:

首先构建 A = [ ∣ b 1 ⟩ ∣ b 2 ⟩ ⋅ ⋅ ⋅ ∣ b n ⟩ ] A=[|b_1\rangle |b_2\rangle ··· |b_n\rangle] A=[∣b1⟩∣b2⟩⋅⋅⋅∣bn⟩] , 然后计算 A T A A^TA ATA.

如果结果是单位矩阵, 他就是一组标准正交基, 否则不是.

给定一组标准正交基 { ∣ b 1 ⟩ , ∣ b 2 ⟩ , ⋅ ⋅ ⋅ , ∣ b n ⟩ } \{|b_1\rangle, |b_2\rangle, ···, |b_n\rangle\} {∣b1⟩,∣b2⟩,⋅⋅⋅,∣bn⟩} 和一个 ket ∣ v ⟩ |v\rangle ∣v⟩, 将这个ket表示成基向量的线性组合, 也就是说解方程 ∣ v ⟩ = x 1 ∣ b 1 ⟩ + x 2 ∣ b 2 ⟩ + ⋅ ⋅ ⋅ + x i ∣ b i ⟩ + ⋅ ⋅ ⋅ + x n ∣ b n ⟩ |v\rangle=x_1|b_1\rangle+x_2|b_2\rangle+···+x_i|b_i\rangle+···+x_n|b_n\rangle ∣v⟩=x1∣b1⟩+x2∣b2⟩+⋅⋅⋅+xi∣bi⟩+⋅⋅⋅+xn∣bn⟩

解决办法:

构建 A = [ ∣ b 1 ⟩ ∣ b 2 ⟩ ⋅ ⋅ ⋅ ∣ b n ⟩ ] A=[|b_1\rangle |b_2\rangle ··· |b_n\rangle] A=[∣b1⟩∣b2⟩⋅⋅⋅∣bn⟩] , 那么

x 1 x 2 ... x n \] = A T ∣ v ⟩ = \[ ⟨ b 1 ∣ v ⟩ ⟨ b 2 ∣ v ⟩ ... ⟨ b n ∣ v ⟩ \] \\begin{bmatrix}x_1\\\\x_2\\\\...\\\\x_n\\end{bmatrix}=A\^T\|v\\rangle=\\begin{bmatrix}\\langle b_1\|v \\rangle\\\\\\langle b_2\|v \\rangle\\\\...\\\\\\langle b_n\|v \\rangle\\end{bmatrix} x1x2...xn =AT∣v⟩= ⟨b1∣v⟩⟨b2∣v⟩...⟨bn∣v⟩ ###### 给定一组标准正交基 { ∣ b 1 ⟩ , ∣ b 2 ⟩ , ⋅ ⋅ ⋅ , ∣ b n ⟩ } \\{\|b_1\\rangle, \|b_2\\rangle, ···, \|b_n\\rangle\\} {∣b1⟩,∣b2⟩,⋅⋅⋅,∣bn⟩} 和 ∣ v ⟩ = c 1 ∣ b 1 ⟩ + c 2 ∣ b 2 ⟩ + ⋅ ⋅ ⋅ + c i ∣ b i ⟩ + ⋅ ⋅ ⋅ + c n ∣ b n ⟩ \|v\\rangle=c_1\|b_1\\rangle+c_2\|b_2\\rangle+···+c_i\|b_i\\rangle+···+c_n\|b_n\\rangle ∣v⟩=c1∣b1⟩+c2∣b2⟩+⋅⋅⋅+ci∣bi⟩+⋅⋅⋅+cn∣bn⟩, 求 ∣ v ⟩ \|v\\rangle ∣v⟩ 的长度 **解决办法**: 使用 ∣ ∣ v ⟩ ∣ 2 = c 1 2 + c 2 2 + ⋅ ⋅ ⋅ + c i 2 + ⋅ ⋅ ⋅ c n 2 \|\|v\\rangle\|\^2=c_1\^2+c_2\^2+···+c_i\^2+···c_n\^2 ∣∣v⟩∣2=c12+c22+⋅⋅⋅+ci2+⋅⋅⋅cn2 摘自: 《人人可懂的量子计算》

相关推荐
结冰架构2 天前
量子金融工程:蒙特卡洛算法误差压缩至0.3%
人工智能·算法·ai·金融·量子计算
IT科技那点事儿2 天前
量子计算浪潮下的安全应对之法
安全·量子计算
Blossom.1184 天前
量子计算在金融领域的应用与展望
数据库·人工智能·分布式·金融·架构·量子计算·ai集成
Blossom.1184 天前
量子计算与经典计算融合:开启计算新时代
人工智能·深度学习·opencv·物联网·生活·边缘计算·量子计算
明月看潮生8 天前
青少年编程与数学 02-016 Python数据结构与算法 25课题、量子算法
python·算法·青少年编程·量子计算·编程与数学
空中湖8 天前
量子冒险:让儿童爱上量子计算的互动学习尝试
量子计算
灏瀚星空8 天前
AI 模型高效化:推理加速与训练优化的技术原理与理论解析
开发语言·人工智能·深度学习·程序人生·机器人·智慧城市·量子计算
蜂耘9 天前
涵盖通算、智算、超算、量算!“四算合一”算力网络投入使用,效率提升20%
量子计算
cainiao08060510 天前
量子机器学习在工业领域的首破:药物研发中的分子活性预测革命
人工智能·机器学习·量子计算
蚂蚁没问题s13 天前
量子指纹识别
量子计算