量子计算中的线性代数工具

量子计算中的线性代数工具

给定一个 n n n 维 ket 的集合 { ∣ b 1 ⟩ , ∣ b 2 ⟩ , ⋅ ⋅ ⋅ , ∣ b n ⟩ } \{|b_1\rangle, |b_2\rangle, ···, |b_n\rangle\} {∣b1⟩,∣b2⟩,⋅⋅⋅,∣bn⟩}, 检验它是否构成一组标准正交基

解决办法:

首先构建 A = [ ∣ b 1 ⟩ ∣ b 2 ⟩ ⋅ ⋅ ⋅ ∣ b n ⟩ ] A=[|b_1\rangle |b_2\rangle ··· |b_n\rangle] A=[∣b1⟩∣b2⟩⋅⋅⋅∣bn⟩] , 然后计算 A T A A^TA ATA.

如果结果是单位矩阵, 他就是一组标准正交基, 否则不是.

给定一组标准正交基 { ∣ b 1 ⟩ , ∣ b 2 ⟩ , ⋅ ⋅ ⋅ , ∣ b n ⟩ } \{|b_1\rangle, |b_2\rangle, ···, |b_n\rangle\} {∣b1⟩,∣b2⟩,⋅⋅⋅,∣bn⟩} 和一个 ket ∣ v ⟩ |v\rangle ∣v⟩, 将这个ket表示成基向量的线性组合, 也就是说解方程 ∣ v ⟩ = x 1 ∣ b 1 ⟩ + x 2 ∣ b 2 ⟩ + ⋅ ⋅ ⋅ + x i ∣ b i ⟩ + ⋅ ⋅ ⋅ + x n ∣ b n ⟩ |v\rangle=x_1|b_1\rangle+x_2|b_2\rangle+···+x_i|b_i\rangle+···+x_n|b_n\rangle ∣v⟩=x1∣b1⟩+x2∣b2⟩+⋅⋅⋅+xi∣bi⟩+⋅⋅⋅+xn∣bn⟩

解决办法:

构建 A = [ ∣ b 1 ⟩ ∣ b 2 ⟩ ⋅ ⋅ ⋅ ∣ b n ⟩ ] A=[|b_1\rangle |b_2\rangle ··· |b_n\rangle] A=[∣b1⟩∣b2⟩⋅⋅⋅∣bn⟩] , 那么

x 1 x 2 ... x n \] = A T ∣ v ⟩ = \[ ⟨ b 1 ∣ v ⟩ ⟨ b 2 ∣ v ⟩ ... ⟨ b n ∣ v ⟩ \] \\begin{bmatrix}x_1\\\\x_2\\\\...\\\\x_n\\end{bmatrix}=A\^T\|v\\rangle=\\begin{bmatrix}\\langle b_1\|v \\rangle\\\\\\langle b_2\|v \\rangle\\\\...\\\\\\langle b_n\|v \\rangle\\end{bmatrix} x1x2...xn =AT∣v⟩= ⟨b1∣v⟩⟨b2∣v⟩...⟨bn∣v⟩ ###### 给定一组标准正交基 { ∣ b 1 ⟩ , ∣ b 2 ⟩ , ⋅ ⋅ ⋅ , ∣ b n ⟩ } \\{\|b_1\\rangle, \|b_2\\rangle, ···, \|b_n\\rangle\\} {∣b1⟩,∣b2⟩,⋅⋅⋅,∣bn⟩} 和 ∣ v ⟩ = c 1 ∣ b 1 ⟩ + c 2 ∣ b 2 ⟩ + ⋅ ⋅ ⋅ + c i ∣ b i ⟩ + ⋅ ⋅ ⋅ + c n ∣ b n ⟩ \|v\\rangle=c_1\|b_1\\rangle+c_2\|b_2\\rangle+···+c_i\|b_i\\rangle+···+c_n\|b_n\\rangle ∣v⟩=c1∣b1⟩+c2∣b2⟩+⋅⋅⋅+ci∣bi⟩+⋅⋅⋅+cn∣bn⟩, 求 ∣ v ⟩ \|v\\rangle ∣v⟩ 的长度 **解决办法**: 使用 ∣ ∣ v ⟩ ∣ 2 = c 1 2 + c 2 2 + ⋅ ⋅ ⋅ + c i 2 + ⋅ ⋅ ⋅ c n 2 \|\|v\\rangle\|\^2=c_1\^2+c_2\^2+···+c_i\^2+···c_n\^2 ∣∣v⟩∣2=c12+c22+⋅⋅⋅+ci2+⋅⋅⋅cn2 摘自: 《人人可懂的量子计算》

相关推荐
MicroTech202510 小时前
微算法科技基于格密码的量子加密技术,融入LSQb算法的信息隐藏与传输过程中,实现抗量子攻击策略强化
区块链·量子计算
Pocker_Spades_A2 天前
论文精读(一)| 量子计算系统软件研究综述
量子计算
xiaoxiaoxiaolll2 天前
华中科大首创DNN衍射量子芯片登《Science Advances》:3D打印实现160μm³高维逻辑门
量子计算
Sui_Network3 天前
tBTC 现已上线 Sui,带来 5 亿美元的比特币流动性
人工智能·物联网·web3·区块链·量子计算
网硕互联的小客服4 天前
未来趋势:AI与量子计算对服务器安全的影响
运维·服务器·网络·网络安全·量子计算
张焚雪7 天前
关于量子计算的一份介绍
量子计算
葫三生8 天前
如何评价《论三生原理》在科技界的地位?
人工智能·算法·机器学习·数学建模·量子计算
花开半谢8 天前
规则解析利器推荐:利用足球比赛规则洞察提升软件预测力
量子计算
MicroTech20258 天前
微算法科技(NASDAQ MLGO)开发基于量子搜索算法的多方量子密钥协议
量子计算
m0_751336398 天前
突破性进展:超短等离子体脉冲实现单电子量子干涉,为飞行量子比特奠定基础
人工智能·深度学习·量子计算·材料科学·光子器件·光子学·无线电电子