MNN createSession 之创建流水线后端(四)

系列文章目录

MNN createFromBuffer(一)
MNN createRuntime(二)
MNN createSession 之 Schedule(三)
MNN createSession 之创建流水线后端(四)
MNN Session 之维度计算(五)
MNN Session 之几何计算(六)
MNN Session 之 CPU 算子(七)
MNN Session 之 Vulkan 算子(八)


文章目录

  • 系列文章目录
  • 1、createSession
    • [1.1 createMultiPathSession](#1.1 createMultiPathSession)
    • [1.1.1 Session 类 ModeGroup](#1.1.1 Session 类 ModeGroup)
    • [1.1.2 Session::Session](#1.1.2 Session::Session)
    • [1.1.2.1 _createPipelineBackend](#1.1.2.1 _createPipelineBackend)
    • [1.1.2.1.1 VulkanRuntime::onCreate](#1.1.2.1.1 VulkanRuntime::onCreate)
    • [1.1.2.1.1.1 VulkanBackend::VulkanBackend](#1.1.2.1.1.1 VulkanBackend::VulkanBackend)
    • [1.1.2.1.2 CPURuntime::onCreate](#1.1.2.1.2 CPURuntime::onCreate)
    • [1.1.2.1.2.1 CPUBackend::CPUBackend](#1.1.2.1.2.1 CPUBackend::CPUBackend)
    • [1.1.2.2 Pipeline 类 TuningAttr、UnitInfo](#1.1.2.2 Pipeline 类 TuningAttr、UnitInfo)
    • [1.1.2.3 Pipeline::Pipeline](#1.1.2.3 Pipeline::Pipeline)
    • [1.1.2.3.1 GeometryComputer::Context](#1.1.2.3.1 GeometryComputer::Context)

1、createSession

依据 ScheduleConfig 和 RuntimeInfo 创建会话。

cpp 复制代码
// source/core/Interpreter.cpp
Session* Interpreter::createSession(const ScheduleConfig& config, const RuntimeInfo& runtime) {
    return createMultiPathSession({config}, runtime);
}

1.1 createMultiPathSession

cpp 复制代码
// source/core/Interpreter.cpp
Session* Interpreter::createMultiPathSession(const std::vector<ScheduleConfig>& configs, const RuntimeInfo& runtime) {
    // ...
    auto newSession =
        std::unique_ptr<Session>(new Session(std::move(info), mNet->modes, std::move(rt)));
    if (!newSession->valid()) {
        MNN_PRINT("Invalide Session!!\n");
        return nullptr;
    }
    auto result = newSession.get();
    auto validForResize = info.validForResize;
    if (validForResize && mNet->modes.inputMode == Session_Input_Inside && mNet->modes.resizeMode == Session_Resize_Direct) {
        result->resize();
    }

    if ((!mNet->cacheFile.empty()) && (!valid) && mNet->modes.backendMode == Session_Backend_Fix) {
        // Try to save extra cache
        auto buffer = result->getCache();
        if (buffer.first != nullptr && buffer.second > 0) {
            MNN_PRINT("Write cache to %s, size = %zu\n", mNet->cacheFile.c_str(), buffer.second);
            writeCacheFile(mNet, buffer);
            mNet->lastCacheSize = buffer.second;
            // Write Cache
            cacheMode = cacheMode | 2;
        }
    }
    // Reset cache
    result->loadCache(nullptr, 0);

    mNet->sessions.emplace_back(std::move(newSession));

#ifdef MNN_INTERNAL_ENABLED
    int precision = BackendConfig::Precision_Normal;
    if (nullptr != configs[0].backendConfig) {
        precision = configs[0].backendConfig->precision;
    }
    int mode = configs[0].mode;
    mNet->sessionInfo.insert(std::make_pair(result, std::make_tuple(precision, mode)));
    if (shouldLog(FREQ_HIGH)) {
        std::map<std::string, std::string> metrics = mNet->basicLogginData;
        metrics.emplace("UUID", mNet->uuid);
        metrics.emplace("Time", std::to_string((float)_timer.durationInUs() / 1024.0f));
        metrics.emplace("Backend", std::to_string(configs[0].type));
        metrics.emplace("Precision", std::to_string(precision));
        metrics.emplace("Mode", std::to_string(mode));
        metrics.emplace("Cache", std::to_string(cacheMode));
        metrics.emplace("CacheSize", std::to_string((float)(mNet->lastCacheSize / 1024.0f)));
        metrics.emplace("ModelSize", std::to_string ((float)mNet->buffer.size() / 1024.0f / 1024.0f));
        metrics.emplace("Usage", std::to_string((int) mNet->net->usage()));
        metrics.emplace("API", "Interpreter::createMultiPathSession");
        logAsync(metrics);
    }
#endif // MNN_INTERNAL_ENABLED

    return result;
}

1.1.1 Session 类 ModeGroup

cpp 复制代码
// source/core/Session.hpp
class MNN_PUBLIC Session {
public:
    struct ModeGroup {
        Interpreter::SessionMode callBackMode = Interpreter::Session_Debug;
        Interpreter::SessionMode inputMode = Interpreter::Session_Input_Inside;
        Interpreter::SessionMode outputMode = Interpreter::Session_Output_Inside;
        Interpreter::SessionMode backendMode = Interpreter::Session_Backend_Fix;
        Interpreter::SessionMode resizeMode = Interpreter::Session_Resize_Direct;
        Interpreter::SessionMode memoryUsageMode = Interpreter::Session_Memory_Collect;
        Interpreter::SessionMode codegenMode = Interpreter::Session_Codegen_Disable;
        int memoryAllocatorType = 0;
        int maxTuningNumber = MNN_DEFAULT_TUNING_NUMBER;
    };
    Session(Schedule::ScheduleInfo&& info, const ModeGroup& mode,
            RuntimeInfo&& runtime);
    ~Session();

    Session* clone(RuntimeInfo&& runtime, std::shared_ptr<Schedule::ScheduleInfo> sharedConst);
public:
    /**
     * @brief infer.
     * @return result code.
     */
    ErrorCode run() const;
    /**
     * @brief infer with callbacks and sync option.
     * @param enterCallback callback before each op.
     * @param exitCallback  callback after each op.
     * @param sync          wait until all ops done before return or not.
     * @return result code.
     */
    ErrorCode runWithCallBack(const TensorCallBackWithInfo& enterCallback, const TensorCallBackWithInfo& exitCallback,
                              bool sync = false) const;

    bool getInfo(Interpreter::SessionInfoCode code, void* ptr) const;

public:
    /**
     * @brief resize tensors and buffers responding to input changes.
     * @return result code.
     */
    ErrorCode resize();

    /**
     * @brief set if needs resize.
     * @param flag  needs resize or not.
     */
    void setNeedResize(bool flag = true) {
        mNeedResize = flag;
    }

    void setNeedMalloc(bool flag = true) {
        mNeedMalloc = flag;
    }

    Runtime* getCPURuntime() {
        return mRuntime.second.get();
    }

public:
    /**
     * @brief get backend that create the tensor.
     * @param tensor    given tensor.
     * @return backend that create the tensor, NULL if the tensor is created by default backend (CPU backend).
     */
    const Backend* getBackEnd(const Tensor* tensor) const;

    /**
     * @brief get input tensor for given op name.
     * @param name given op name. if NULL, return first input tensor.
     * @return input tensor if found, NULL otherwise.
     */
    Tensor* getInput(const char* name) const;

    /**
     * @brief get output tensor for given op name.
     * @param name given op name. if NULL, return first output tensor.
     * @return output tensor if found, NULL otherwise.
     */
    Tensor* getOutput(const char* name) const;

    /**
     * @brief get output tensors map.
     * @return get output tensors map.
     */
    const std::map<std::string, Tensor*>& getOutputAll() const;
    const std::map<std::string, Tensor*>& getInputAll() const;

    /**
     * @brief check session is valid or not.
     * @return session is valid or not.
     */
    inline bool valid() const {
        return mValid;
    }

    /**
     * @brief update the session's const value to origin model's const blob.
     * @return errorcode
     */
    ErrorCode updateToModel(Net* net) const;

    void waitAsyncResize();
    bool hasAsyncWork();
    bool loadCache(const void* buffer, size_t size);
    std::pair<const void*, size_t> getCache();

    Tensor* getTensor(int index) const;
    Schedule::PipelineInfo& getPipelineInfo(int index) const;
protected:
    const std::vector<std::shared_ptr<Pipeline>>& getPipelines() const {
        return this->mPipelines;
    }

private:
    void _clearCache();
    void _setUpTensorInfo(const Schedule::ScheduleInfo& info);

private:
    RuntimeInfo mRuntime;
    std::vector<std::shared_ptr<Pipeline>> mPipelines;
    bool mNeedResize = true;
    bool mValid      = true;
    bool mNeedMalloc = true;
    Interpreter::SessionMode mCallBackMode;
    Interpreter::SessionMode mMemoryUsageMode;
    Interpreter::SessionMode mCodegenMode;
    Schedule::ScheduleInfo mInfo;
    ModeGroup mMode;
};

1.1.2 Session::Session

cpp 复制代码
// source/core/Session.cpp
Session::Session(Schedule::ScheduleInfo&& info, const ModeGroup& mode, RuntimeInfo&& runtime) {
    mMode = mode;
    mRuntime = std::move(runtime);
    if (info.pipelineInfo.empty()) {
        mValid = false;
        return;
    }
    mInfo = std::move(info);
    for (auto& iter : mInfo.pipelineInfo) {
        _createPipelineBackend(iter, mRuntime);
        Pipeline::TuningAttr attr;
        attr.maxTuningNumber = mode.maxTuningNumber;
        attr.autoSetOpType = mode.backendMode == Interpreter::Session_Backend_Auto;
        auto rt    = mRuntime.first.find(iter.first.info.type)->second.get();
        auto cpuRuntime = mRuntime.second;
        std::shared_ptr<Pipeline> newPipeline(new Pipeline(std::move(iter), mode.inputMode == Interpreter::Session_Input_Inside, mode.outputMode == Interpreter::Session_Output_User, attr, rt, cpuRuntime.get()));
        mPipelines.emplace_back(std::move(newPipeline));
    }
    mCallBackMode = mode.callBackMode;
    mMemoryUsageMode = mode.memoryUsageMode;
    mCodegenMode = mode.codegenMode;
}

1.1.2.1 _createPipelineBackend

创建流水线后端。BackendCache

cpp 复制代码
// source/core/Session.cpp
// typedef std::pair<BackendCache, std::vector<OpCacheInfo>> PipelineInfo;
//
//   struct BackendCache {
//      Backend::Info info;
//      BackendConfig config;
//      std::pair<std::shared_ptr<Backend>, std::shared_ptr<Backend>> cache;
//      bool needComputeShape = true;
//      bool needComputeGeometry = true;
//      bool reportError = true;
//      std::map<Tensor*, TENSORCACHE> inputTensorCopyCache;
//  };
//
// typedef std::pair< std::map<MNNForwardType, std::shared_ptr<Runtime>>,  \
//						std::shared_ptr<Runtime>> RuntimeInfo;
//
static void _createPipelineBackend(Schedule::PipelineInfo& iter, RuntimeInfo& runtime) {
	// iter.first 类型为 struct BackendCache 
    if (iter.first.cache.first != nullptr) {
        return;
    }
    // runtime.first 类型为 std::map<MNNForwardType, std::shared_ptr<Runtime>>
    // 根据 MNNForwardType(MNN_FORWARD_VULKAN) 获取对应的 Runtime(VulkanRuntime)
    auto rt    = runtime.first.find(iter.first.info.type)->second.get();
    // runtime.second 为默认 Runtime(CPURuntime)
    auto cpuRuntime = runtime.second;
    bool specialUsage = false;
    if (iter.first.info.user != nullptr) {
        specialUsage = iter.first.info.user->flags > 0;
    }
    // 此处运行 VulkanRuntime::onCreate,创建对应的 Backend(VulkanBackend)
    // iter.first.cache 类型为 std::pair<std::shared_ptr<Backend>, std::shared_ptr<Backend>>
    iter.first.cache.first.reset(rt->onCreate(iter.first.info.user));
    std::shared_ptr<Backend> second;
    if (iter.first.cache.first->type() == MNN_FORWARD_CPU && (!specialUsage)) {
        iter.first.cache.second = iter.first.cache.first;
    } else {
        // Const Backend shouldn't be used as default backend
        // The session may be schedule multi-thread but const backend is the same
        // We need create a new backend to do size compute / not support op compute
        // 创建默认的 Backend(CPUBackend)
        BackendConfig defaultConfig;
        defaultConfig.flags = 4;
        iter.first.cache.second.reset(cpuRuntime->onCreate(&defaultConfig));
    }
}

1.1.2.1.1 VulkanRuntime::onCreate

cpp 复制代码
// source/backend/vulkan/runtime/VulkanRuntime.cpp
Backend* VulkanRuntime::onCreate(const BackendConfig* config) const {
    // FIXME: Use config
    return new VulkanBackend(this, mInfo);
}

1.1.2.1.1.1 VulkanBackend::VulkanBackend

cpp 复制代码
// source/backend/vulkan/image/backend/VulkanBackend.cpp
VulkanBackend::VulkanBackend(const VulkanRuntime* runtime, const Backend::Info& info) : Backend(MNN_FORWARD_VULKAN) {
    mRuntime = runtime;
    mDirect = Backend::Info::INDIRECT != info.mode;
    mDynamicMemoryPool.reset(new VulkanMemoryPool(runtime->mMemoryPool.get()));

    auto& dev              = device();
    mFence                 = std::make_shared<VulkanFence>(dev);
    if (!mDirect) {
        mCmdBuffer.reset(runtime->mCmdPool->allocBuffer());
    }
    mInitBuffer.reset(runtime->mCmdPool->allocBuffer());
}

1.1.2.1.2 CPURuntime::onCreate

cpp 复制代码
// source/backend/cpu/CPUBackend.cpp
Backend* CPURuntime::onCreate(const BackendConfig* config) const {
    auto precision = mPrecision;
    auto memory = mMemory;
    size_t flags = mFlags;
    if (nullptr != config) {
        precision = config->precision;
        flags = config->flags;
        memory = config->memory;
    }
#ifdef LOG_VERBOSE
    MNN_PRINT("cpu backend was created by runtime:%p\n", this);
#endif

#ifdef MNN_USE_ARMV82
    auto core = MNNGetCoreFunctions();
    if (core->supportFp16arith && precision == BackendConfig::Precision_Low) {
        return new Arm82Backend(this, memory);
    }
#endif
#ifdef MNN_SUPPORT_BF16
    if (precision == BackendConfig::Precision_Low_BF16 && BF16Functions::get()) {
        return new BF16Backend(this);
    }
#endif
    if (flags == MNN_CPU_USE_DEFAULT_BACKEND) {
        return new CPUBackend(this, precision, memory, MNN_FORWARD_CPU, 0);
    }
#ifdef MNN_USE_SSE
    if (AVX2Backend::isValid()) {
        return new AVX2Backend(this, memory, flags);
    }
#endif

    return new CPUBackend(this, precision, memory, MNN_FORWARD_CPU, flags);
}

1.1.2.1.2.1 CPUBackend::CPUBackend

cpp 复制代码
// source/backend/cpu/CPUBackend.cpp
CPUBackend::CPUBackend(const CPURuntime* runtime, BackendConfig::PrecisionMode precision, BackendConfig::MemoryMode memory, MNNForwardType type, size_t flags) : Backend(type) {
#ifdef LOG_VERBOSE
    MNN_PRINT("cpu backend create\n");
#endif
    mMemory = memory;
    mRuntime = const_cast<CPURuntime*>(runtime);
    std::shared_ptr<BufferAllocator::Allocator> defaultAlloc(BufferAllocator::Allocator::createRecurse(runtime->mStaticAllocator.get()));
    if (mRuntime->getAllocatorType() == Runtime::Allocator_Defer) {
        mDynamicAllocator.reset(new DeferBufferAllocator(defaultAlloc));
    } else {
        mDynamicAllocator.reset(new EagerBufferAllocator(defaultAlloc));
    }
    mStaticAllocator = runtime->mStaticAllocator;
    mPrecisionMode = precision;
    mCoreFunctions = MNNGetCoreFunctions();
    mInt8CoreFunctions = MNNGetInt8CoreFunctions();
    mCache = new CPUResizeCache;
}

1.1.2.2 Pipeline 类 TuningAttr、UnitInfo

cpp 复制代码
// source/core/Pipeline.hpp
/** pipeline. one session may contains multiple pipeline, and one pipeline may contains more than one unit. */
class Pipeline : public NonCopyable {
public:
    struct TuningAttr {
        bool autoSetOpType;
        int maxTuningNumber;
    };
    Pipeline(Schedule::PipelineInfo&& info, bool allocInput, bool outputStatic, const TuningAttr& tune, const Runtime* rt, const Runtime* cpuRt);
    ~Pipeline();
    class UnitInfo : public OperatorInfo {
    public:
        UnitInfo()          = default;
        virtual ~UnitInfo() = default;
        void setUp(const Command& cmd, int index, const Op* originOp, int totalIndex);
    };
public:
    /** encode :
       1. compute shape for every op's inputs and outputs;
       2. geometry transform;
       3. copy op, inputs and outputs tensor info to mBuffer
       static_model:  3; dynamic_model: 1,2,3
    */
    ErrorCode encode(bool supportDebug = false, bool permitCodegen = false);
    /** allocMemory: create Execution and alloc memory for every op */
    ErrorCode allocMemory(bool firstMalloc, bool permitCodegen);
    /** execute this pipline */
    ErrorCode execute();
    ErrorCode executeCallBack(const TensorCallBackWithInfo& before, const TensorCallBackWithInfo& after);
    Schedule::PipelineInfo& getPipelineInfo() {
        return mInfo;
    }

    float flops() const {
        return mFlops;
    }
    friend class Session;
    MNNForwardType getMainForwardType() const  {
        return mInfo.first.cache.first->type();
    }
private:
    void _copyInputs();
    void _pushTuningTask(std::vector<Schedule::OpCacheInfo>&& initInfos);
    void _recycleDynamicMemory(Command* command);
    Schedule::PipelineInfo mInfo;
    bool mAllocInput;
    bool mOutputStatic;
    TuningAttr mTuneAttr;
    float mFlops = 0.0f;
    bool mIsQuantModel = false;

    // For gpu or other backend
    std::map<Tensor*, std::shared_ptr<Tensor>> mCacheConstTensors;
    std::map<Tensor*, std::shared_ptr<Tensor>> mShapeFixConstCache;
#ifndef MNN_BUILD_MINI
    GeometryComputer::Context mContext;
    Runtime::CompilerType mUseGeometry;
#endif
    const Runtime* mRuntime;
    const Runtime* mCpuRuntime;
};

1.1.2.3 Pipeline::Pipeline

OpCacheInfo

cpp 复制代码
// source/core/Pipeline.cpp
// typedef std::pair<BackendCache, std::vector<OpCacheInfo>> PipelineInfo;
//
//    /** pipeline info */
//    struct OpCacheInfo {
//        /** op */
//        const Op* op;
//        /** input tensors */
//        std::vector<Tensor*> inputs;
//        /** output tensors */
//        std::vector<Tensor*> outputs;
//        /** schedule type*/
//        Schedule::Type type = Schedule::Type::SEPARATE;
//
//        /**Command buffer for cache*/
//        CommandBuffer cacheBuffer;
//
//        /**Command buffer for execute*/
//        CommandBuffer executeBuffer;
//        
//        std::map<const Op*, std::shared_ptr<Execution>> executionCache;
//    };
//
Pipeline::Pipeline(Schedule::PipelineInfo&& info, bool allocInput, bool outputStatic, const TuningAttr& tune, const Runtime* rt, const Runtime* cpuRt)
#ifndef MNN_BUILD_MINI
	// mContext 类型为 GeometryComputer::Context
    : mContext(info.first.cache.second, info.first.cache.first->type(), info.first.info.user ? info.first.info.user->precision :  BackendConfig::Precision_Normal), mUseGeometry(rt->onGetCompilerType()) {
#else
{
#endif
    rt->onCheckInfo(info.first.info);
    mRuntime = rt;
    mCpuRuntime = cpuRt;
    mTuneAttr = tune;
    mAllocInput    = allocInput;
    mOutputStatic  = outputStatic;
    mInfo          = std::move(info);
    mIsQuantModel = false;
    // mInfo.second 类型为 std::vector<OpCacheInfo>
    for (auto& iter : mInfo.second) {
        for (auto t : iter.outputs) {
            if (TensorUtils::getDescribe(t)->quantAttr.get() != nullptr) {
            	// 是否是量化模型
                mIsQuantModel = true;
                break;
            }
        }
        for (auto t : iter.inputs) {
            if (TensorUtils::getDescribe(t)->quantAttr.get() != nullptr) {
                mIsQuantModel = true;
                break;
            }
        }
        if (mIsQuantModel) {
            break;
        }
    }

}

1.1.2.3.1 GeometryComputer::Context

cpp 复制代码
class GeometryComputer {
public:
    virtual ~GeometryComputer() {
        // Do nothing
    }
    class MNN_PUBLIC Context {
    public:
        Context(std::shared_ptr<Backend> allocBackend, MNNForwardType type = MNN_FORWARD_CPU, BackendConfig::PrecisionMode precision = BackendConfig::Precision_Normal);
        ~Context();

        void clear();
        void setBackend(Backend* backend);
        void getRasterCacheCreateRecursive(Tensor* src, CommandBuffer& cmd);

        // If has cache, return. Otherwise create cache
        const std::vector<std::shared_ptr<Tensor>>& searchConst(const Op* op);
        std::shared_ptr<Tensor> allocConst(const Op* key, const std::vector<int>& shape, halide_type_t type,
                                           Tensor::DimensionType dimType = Tensor::TENSORFLOW);
        bool allocTensor(Tensor* tenosr);
        inline MNNForwardType forwardType() const {
            return mForwardType;
        }
        inline BackendConfig::PrecisionMode precisionType() const {
            return mPrecision;
        }
        void pushCache(const CommandBuffer& buffer);
        std::shared_ptr<BufferStorage> mRasterOp;
    private:
        void getRasterCacheCreate(Tensor* src, CommandBuffer& cmd);
        std::map<const Op*, std::vector<std::shared_ptr<Tensor>>> mConstTensors;
        std::vector<std::shared_ptr<Tensor>> mEmpty;
        std::vector<std::shared_ptr<Tensor>> mTempConstTensors;
        std::shared_ptr<Backend> mBackend;
        MNNForwardType mForwardType;
        BackendConfig::PrecisionMode mPrecision;
        std::vector<SharedPtr<Command>> mRasterCmdCache;
    };
    static void init();
    MNN_PUBLIC static const GeometryComputer* search(int opType, Runtime::CompilerType compType);
    static void registerGeometryComputer(std::shared_ptr<GeometryComputer> comp, std::vector<int> type, Runtime::CompilerType compType = Runtime::Compiler_Geometry);

    virtual bool onCompute(const Op* op, const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs,
                           Context& context, CommandBuffer& cmd) const = 0;
    virtual bool onRecompute(const Op* op, const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs,
                             Context& context, CommandBuffer& cmd) const {
        return false;
    }
};

相关推荐
十有久诚32 分钟前
SVL-Adapter: Self-Supervised Adapter for Vision-Language Pretrained Models
人工智能·深度学习·计算机视觉·视觉语言模型·适配器微调
学习前端的小z42 分钟前
【AI绘画】Midjourney进阶:色调详解(上)
人工智能·ai作画·aigc·midjourney
cv2016_DL1 小时前
BERT相关知识
人工智能·算法·transformer
搏博1 小时前
神经网络中的损失函数(Loss Function)
人工智能·深度学习·神经网络
分才1 小时前
用天翼云搭建一个HivisionIDPhoto证件照处理网站
人工智能·学习·html5
数据猎手小k1 小时前
FineTuneBench:由斯坦福大学创建,包含625个训练问题和1075个测试问题,覆盖4个领域。目的评估商业微调API在不同泛化任务中的知识注入能力。
人工智能·深度学习·机器学习·数据集·机器学习数据集·ai大模型应用
CODE_RabbitV1 小时前
Python + 深度学习从 0 到 1(00 / 99)
开发语言·python·深度学习
傻瓜学习1 小时前
机器学习知识点
人工智能·机器学习
Seeklike1 小时前
11.26 深度学习-初始化
人工智能·深度学习
池央2 小时前
深度学习模型:循环神经网络(RNN)
人工智能·rnn·深度学习