性能优化利器——缓存(附三种常见缓存设计)

写在前面

之前提到过作为典型的空间换时间的优化手段,除了预计算,就是缓存了。在开发工作中缓存恐怕无处不在,无论是Redis与Mysql的配合,或者是一个全局的MAP,哪怕是小小的CPU,也有不同等级的cache。缓存不同于预计算这种基于业务场景的一视同仁,而是充分的利用了空间局部性远离,每一次缓存命中,都是计算机的浪漫

缓存带来的提升

1、加快数据访问速度;

2、减轻后端应用和数据存储的负载压力。

缓存需要考虑的问题

引用下Phil Karlton大神的经典语录:

计算机科学中只有两件困难的事情:缓存失效和命名规范。

There are only two hard things in Computer Science: cache invalidation and naming things.

在数据更新的过程中,引入了缓存的系统不得不需要更改两个地方的数据,因此必然会不一致。根据业务的需要,如何更好的利用缓存的特性与尽可能避免不一致带来的问题,是缓存设计的唯一标准

缓存常见应用

高一致性设计

为了尽可能的保证高一致性,在写数据时,更新数据库的同时删除对应的缓存,这样在有读请求时,就会因为缓存miss而去数据库中读,防止出现不一致的问题

可能会有人问:写数据库和删除cache之间也是两个操作,是否会有不一致的可能呢?一般来说不一致指的是数据库和缓存不一致,所以只要我们先删除缓存后更新DB就能保证一致性。

高频写入场景

高频写场景如果也像上面一样,先删除cache再更新DB的话,性能就会受到影响,为了尽可能提高写入性能,我们可以在写时先更新缓存,并异步的修改DB中的数据。而在读取数据时,也优先读取缓存,如果缓存miss,则从数据库中读取数据后,再写入缓存。

冷热分区

相同的存储大小,缓存的价格一般大于磁盘的价格,因此使用缓存时我们必然希望可以尽可能提高缓存的命中率,而不是将所有数据都放入缓存(当数据比较大时,如果数据只有10M,自然也就无所谓了)。

因此我们会将数据进行冷热分区,当写入数据时,如果数据本身在缓存中,则都更新,如果数据不再缓存中,则只更新DB。而当我们读取时,如果缓存中没有数据,则读取数据后再写入缓存。

在读的部分和上面的很像,本质上都是利用空间局部性原理。

总结

其实缓存设计不只这几种,只不过其他的设计并没有围绕缓存的优势来做文章,因此不在本文中赘述。

相关推荐
q***441510 分钟前
Spring Security 新版本配置
java·后端·spring
计算机毕设匠心工作室13 分钟前
【python大数据毕设实战】强迫症特征与影响因素数据分析系统、Hadoop、计算机毕业设计、包括数据爬取、数据分析、数据可视化、机器学习、实战教学
后端·python·mysql
o***741719 分钟前
Springboot中SLF4J详解
java·spring boot·后端
雨中散步撒哈拉30 分钟前
18、做中学 | 初升高 | 考场一 | 面向过程-家庭收支记账软件
开发语言·后端·golang
韩立学长1 小时前
【开题答辩实录分享】以《智慧物业管理系统的设计与实现》为例进行答辩实录分享
java·后端·mysql
d***95622 小时前
springboot接入deepseek深度求索 java
java·spring boot·后端
iOS开发上架哦2 小时前
Swift中对象实例方法名混淆问题详细解决方法
后端
零日失眠者2 小时前
【文件管理系列】003:重复文件查找工具
后端·python
哈哈哈笑什么2 小时前
多级缓存框架(Redis + Caffeine)完整指南
redis·后端
哈哈哈笑什么2 小时前
分布式事务实战:订单服务 + 库存服务(基于本地消息表组件)
分布式·后端·rabbitmq