数据挖掘之关联规则

"啤酒和尿布的荣誉"

概念

  • 项 item:单个的事物个体 ,I={i1,i2...im}是所有项的集合,|I|=m是项的总数
  • 项集(item set)/模式(pattern):项的集合,包含k个项的项集称为k-项集
  • 数据集(data set)/数据库(data base):D={T1,T2,...Tn}是与任务相关的数据库事务/记录/交易的集合,每个事务有一个标识符,称作TID。|D|=n为数据集中包含的事务总数。
  • 支持度support :项集的出现频率(0~1)/比例(绝对数)
  • 置信度/可信度(confidence):在D中的那些包含A的事务中,B也同时出现的条件概率P(B|A)=P(AB)/P(A)
  • 频繁项集(frequent itemset)/模式(pattern):项集的支持度>=最小支持度(min support)
  • 关联规则(association rules):关联规则是形如A=>B的蕴含式,具有支持度s=support(A ∪ \cup ∪B),c=confidence(A=>B)=P(B|A)=support(A ∪ \cup ∪B)/support(A)
  • 强规则:同时满足最小支持度和最小置信度的规则称作强规则。关联规则发掘分为两步:
    • 找出所有频繁项集
    • 产生强规则

例子

结论与注意事项

1.非频繁项集的超集都是非频繁的

support(y)<=support(x)<min_sup

y=x ∪ \cup ∪其他

2.频繁项集的子集是频繁的

1.强规则不一定有价值

2.相关分析:corr(A,B)=P(A ∪ \cup ∪B)/P(A)P(B)

正相关>1,负相关<1,独立=1

问题分类

根据规则中所处理的值的类型分类:

  • 布尔关联规则(boolean association rule):规则考虑的关联是项的在与不在
  • 量化关联规则(quantitative association rule):规则描述的是量化的项或属性之间的关联

根据规则中所涉及的数据维数分类:

  • 单维关联规则(single-dimensional association rule) :规则中的项或属性每个只涉及一个维
  • 多维关联规则(multi-dimensional association rule):规则涉及多维度

根据规则中所涉及的抽象层分类:

  • 单层关联规则(single-level association rule):规则不考虑项的分层
  • 多层关联规则(multi-level association rule):考虑项的分层 buys(X,milk)=>buys(X,food)

频繁模式挖掘的分类:

  • 频繁模式挖掘
  • 交互挖掘
  • 增量挖掘
  • 效用频繁模式挖掘
  • 最大频繁模式挖掘
  • 频繁闭合模式挖掘
  • 并行/分布式挖掘

经典算法

基于候选项生成与测试(candidate generation and test)

非频繁项集的超集都是非频繁的

代表作:apriori(1994)

基于分治的模式增长(pattern growth)

采用分而治之的方法:频繁项集的子集是频繁的

代表作:FP-growth(2000)

相关推荐
Coding茶水间6 分钟前
基于深度学习的路面坑洞检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
图像处理·人工智能·深度学习·yolo·目标检测·计算机视觉
梵得儿SHI12 分钟前
AI Agent 深度解析:高级架构、优化策略与行业实战指南(多智能体 + 分层决策 + 人类在环)
人工智能·多智能体系统·aiagent·分层决策系统·人类在环机制·agent系统完整解决方案·aiagent底层原理
Peter_Monster30 分钟前
大语言模型(LLM)架构核心解析(干货篇)
人工智能·语言模型·架构
Ma0407131 小时前
【机器学习】监督学习、无监督学习、半监督学习、自监督学习、弱监督学习、强化学习
人工智能·学习·机器学习
cooldream20091 小时前
LlamaIndex 存储体系深度解析
人工智能·rag·llamaindex
Elastic 中国社区官方博客1 小时前
使用 A2A 协议和 MCP 在 Elasticsearch 中创建一个 LLM agent 新闻室:第二部分
大数据·数据库·人工智能·elasticsearch·搜索引擎·ai·全文检索
知识浅谈1 小时前
我用Gemini3pro 造了个手控全息太阳系
人工智能
孤廖1 小时前
终极薅羊毛指南:CLI工具免费调用MiniMax-M2/GLM-4.6/Kimi-K2-Thinking全流程
人工智能·经验分享·chatgpt·ai作画·云计算·无人机·文心一言
aneasystone本尊1 小时前
学习 LiteLLM 的日志系统
人工智能
秋邱1 小时前
价值升维!公益赋能 + 绿色技术 + 终身学习,构建可持续教育 AI 生态
网络·数据库·人工智能·redis·python·学习·docker