数据挖掘之关联规则

"啤酒和尿布的荣誉"

概念

  • 项 item:单个的事物个体 ,I={i1,i2...im}是所有项的集合,|I|=m是项的总数
  • 项集(item set)/模式(pattern):项的集合,包含k个项的项集称为k-项集
  • 数据集(data set)/数据库(data base):D={T1,T2,...Tn}是与任务相关的数据库事务/记录/交易的集合,每个事务有一个标识符,称作TID。|D|=n为数据集中包含的事务总数。
  • 支持度support :项集的出现频率(0~1)/比例(绝对数)
  • 置信度/可信度(confidence):在D中的那些包含A的事务中,B也同时出现的条件概率P(B|A)=P(AB)/P(A)
  • 频繁项集(frequent itemset)/模式(pattern):项集的支持度>=最小支持度(min support)
  • 关联规则(association rules):关联规则是形如A=>B的蕴含式,具有支持度s=support(A ∪ \cup ∪B),c=confidence(A=>B)=P(B|A)=support(A ∪ \cup ∪B)/support(A)
  • 强规则:同时满足最小支持度和最小置信度的规则称作强规则。关联规则发掘分为两步:
    • 找出所有频繁项集
    • 产生强规则

例子

结论与注意事项

1.非频繁项集的超集都是非频繁的

support(y)<=support(x)<min_sup

y=x ∪ \cup ∪其他

2.频繁项集的子集是频繁的

1.强规则不一定有价值

2.相关分析:corr(A,B)=P(A ∪ \cup ∪B)/P(A)P(B)

正相关>1,负相关<1,独立=1

问题分类

根据规则中所处理的值的类型分类:

  • 布尔关联规则(boolean association rule):规则考虑的关联是项的在与不在
  • 量化关联规则(quantitative association rule):规则描述的是量化的项或属性之间的关联

根据规则中所涉及的数据维数分类:

  • 单维关联规则(single-dimensional association rule) :规则中的项或属性每个只涉及一个维
  • 多维关联规则(multi-dimensional association rule):规则涉及多维度

根据规则中所涉及的抽象层分类:

  • 单层关联规则(single-level association rule):规则不考虑项的分层
  • 多层关联规则(multi-level association rule):考虑项的分层 buys(X,milk)=>buys(X,food)

频繁模式挖掘的分类:

  • 频繁模式挖掘
  • 交互挖掘
  • 增量挖掘
  • 效用频繁模式挖掘
  • 最大频繁模式挖掘
  • 频繁闭合模式挖掘
  • 并行/分布式挖掘

经典算法

基于候选项生成与测试(candidate generation and test)

非频繁项集的超集都是非频繁的

代表作:apriori(1994)

基于分治的模式增长(pattern growth)

采用分而治之的方法:频繁项集的子集是频繁的

代表作:FP-growth(2000)

相关推荐
飞哥数智坊8 小时前
GPT-5-Codex 发布,Codex 正在取代 Claude
人工智能·ai编程
倔强青铜三8 小时前
苦练Python第46天:文件写入与上下文管理器
人工智能·python·面试
虫无涯9 小时前
Dify Agent + AntV 实战:从 0 到 1 打造数据可视化解决方案
人工智能
Dm_dotnet11 小时前
公益站Agent Router注册送200刀额度竟然是真的
人工智能
算家计算11 小时前
7B参数拿下30个世界第一!Hunyuan-MT-7B本地部署教程:腾讯混元开源业界首个翻译集成模型
人工智能·开源
机器之心11 小时前
LLM开源2.0大洗牌:60个出局,39个上桌,AI Coding疯魔,TensorFlow已死
人工智能·openai
Juchecar13 小时前
交叉熵:深度学习中最常用的损失函数
人工智能
林木森ai13 小时前
爆款AI动物运动会视频,用Coze(扣子)一键搞定全流程(附保姆级拆解)
人工智能·aigc
聚客AI13 小时前
🙋‍♀️Transformer训练与推理全流程:从输入处理到输出生成
人工智能·算法·llm
BeerBear15 小时前
【保姆级教程-从0开始开发MCP服务器】一、MCP学习压根没有你想象得那么难!.md
人工智能·mcp