【目标检测】YOLOv2 网络结构(darknet-19 作为 backbone)

上一篇文章主要是写了一些 YOLOv1 的原版网络结构,这篇文章一样,目标是还原论文中原版的 YOLOv2 的网络结构,而不是后续各种魔改的版本。

YOLOv2 和 YOLOv1 不一样,开始使用 Darknet-19 来作为 backbone 了。论文中给出了 Darknet-19 的网络结构细节图。但是表格中的输入甚至不是 448x448x3 的,而是 224x224x3 的,但是论文中特别提到:

We also shrink the network to operate on 416 input images instead of 448×448. We do this because we want an odd number of locations in our feature map so there is a single center cell.

就是说为了让网格为奇数,中心点只存在一个中心网格,就将输入的尺寸设定为了 416x416x3。

按照 416x416x3 的网络输入的话,backbone Darknet-19 的网络结构参数示意图如下面表格所示。

layer output size module
input 416x416x3
1 416x416x32 Conv 3x3x32, s-1, p-1 backbone: Darknet-19
208x208x32 Maxpool 2x2, s-2, p-0 backbone: Darknet-19
2 208x208x64 Conv 3x3x64, s-1, p-1 backbone: Darknet-19
104x104x64 Maxpool 2x2, s-2, p-0 backbone: Darknet-19
3 104x104x128 Conv 3x3x128, s-1, p-1 backbone: Darknet-19
4 104x104x64 Conv 1x1x64, s-1, p-0 backbone: Darknet-19
5 104x104x128 Conv 3x3x128, s-1, p-1 backbone: Darknet-19
52x52x128 Maxpool 2x2, s-2, p-0 backbone: Darknet-19
6 52x52x256 Conv 3x3x256, s-1, p-1 backbone: Darknet-19
7 52x52x128 Conv 1x1x128, s-1, p-0 backbone: Darknet-19
8 52x52x256 Conv 3x3x256, s-1, p-1 backbone: Darknet-19
26x26x256 Maxpool 2x2, s-2, p-0 backbone: Darknet-19
9 26x26x512 Conv 3x3x512, s-1, p-1 backbone: Darknet-19
10 26x26x256 Conv 1x1x256, s-1, p-0 backbone: Darknet-19
11 26x26x512 Conv 3x3x512, s-1, p-1 backbone: Darknet-19
12 26x26x256 Conv 1x1x256, s-1, p-0 backbone: Darknet-19
13 26x26x512 Conv 3x3x512, s-1, p-1 backbone: Darknet-19
13x13x512 Maxpool 2x2, s-2, p-0 backbone: Darknet-19
14 13x13x1024 Conv 3x3x1024, s-1, p-1 backbone: Darknet-19
15 13x13x512 Conv 1x1x512, s-1, p-0 backbone: Darknet-19
16 13x13x1024 Conv 3x3x1024, s-1, p-1 backbone: Darknet-19
17 13x13x512 Conv 1x1x512, s-1, p-0 backbone: Darknet-19
18 13x13x1024 Conv 3x3x1024, s-1, p-1 backbone: Darknet-19
19 13x13x1000 Conv 1x1x1000, s-1, p-0 backbone: Darknet-19
1000 Avgpool
1 softmax

因为要作为 YOLOv2 的 backbone,所以要将后面的一个 1x1 的卷积层(相当于 FC 层)和后续的 softmax 去掉。所以实际上 Darknet-19 作为 backbone 在 YOLOv2 里只有 18 个卷积层。

可以看到上面 YOLOv2 的 backbone 部分只有 Darknet-19 的 前 18 个卷积层。

  • Pass Through 层,感觉和 YOLOv5 中出现的 Focus 模块是一样的:

    是对特征的重新排列,一种特殊的 reshape。
  • 最后的 1x1 卷积层,是根据类别 class 的数量来决定的,例如,你如果有目标检测的类别有 20 类,那么,因为每个网格 grid 一般会预测 5 个 boundary box,每个 boundary box 会预测 4 个坐标值(x, y, w, h) + 1 个置信率 conf + 20 个类别。计算出来就是一个网格 grid 会预测 125 个参数。

YOLO2的训练主要包括三个阶段。

  • 第一阶段就是先在ImageNet分类数据集上预训练Darknet-19,此时模型输入为 224x224 ,共训练160个epochs。
  • 第二阶段将网络的输入调整为 448x448,继续在ImageNet数据集上finetune分类模型,训练10个epochs,此时分类模型的top-1准确度为76.5%,而top-5准确度为93.3%。
  • 第三个阶段就是修改Darknet-19分类模型为检测模型,移除最后一个卷积层、global avgpooling层以及softmax层,并且新增了三个 3x3x1024卷积层,同时增加了一个passthrough层,最后使用 1x1 卷积层输出预测结果,输出的channels数为:num_anchors(5+num_classes) 。
相关推荐
Mintopia13 小时前
开源AIGC模型对Web技术生态的影响与机遇 🌐✨
人工智能·aigc·敏捷开发
codetown13 小时前
openai-go通过SOCKS5代理调用外网大模型
人工智能·后端
世优科技虚拟人13 小时前
2026数字展厅设计核心关键,AI数字人交互大屏加速智慧展厅升级改造
人工智能·大模型·数字人·智慧展厅·展厅设计
艾莉丝努力练剑14 小时前
【Python基础:语法第一课】Python 基础语法详解:变量、类型、动态特性与运算符实战,构建完整的编程基础认知体系
大数据·人工智能·爬虫·python·pycharm·编辑器
MobotStone14 小时前
数字沟通之道
人工智能·算法
Together_CZ14 小时前
Cambrian-S: Towards Spatial Supersensing in Video——迈向视频中的空间超感知
人工智能·机器学习·音视频·spatial·cambrian-s·迈向视频中的空间超感知·supersensing
caiyueloveclamp15 小时前
【功能介绍05】ChatPPT好不好用?如何用?用户操作手册来啦!——【AI辅写+分享篇】
人工智能·powerpoint·ai生成ppt·aippt·免费aippt
Aileen_0v015 小时前
【Gemini3.0的国内use教程】
android·人工智能·算法·开源·mariadb
xiaogutou112115 小时前
5款软件,让歌唱比赛海报设计更简单
人工智能
后端小张15 小时前
智眼法盾:基于Rokid AR眼镜的合同条款智能审查系统开发全解析
人工智能·目标检测·计算机视觉·ai·语言模型·ar·硬件架构