数据仓库的建设步骤

1.需求,要和业务部门深入讨论,了解他们的现状,诉求,以及期望,包括我要分析什么内容,需要到什么样的颗粒度,数据从哪里来的,是手工还是系统,数据质量怎么样,期望数据提供的频率是什么样的,实时的还是按月、半月、周、日等,分析的指标有哪些,维度是什么,总之,就是多交流,作为技术人员,要一定先理解业务,如果分工比较明确,就是产品经理与用户进行沟通了,这个过程一定要多听,多问,进行苏格拉底式提问,前期工作越详细,实施和开发阶段就越顺畅。

2.一定要进行架构、模型设计,架构关乎到系统的可用性,可扩展性,模型关乎到是否能灵活快速的提供数据,虽然现在敏捷很流行,但是整体框架还是要提前考虑的,在实际过程中,很多的敏捷变成了推到重来,一是耗费了很多时间,客户不满意,二是开发人员重复劳动,很有挫败感,三是投入产出问题。

3.明确责任人,数据仓库建设不单是一项技术工作,它的目的是为了提供有效,高质量,及时的数据,数据的使用者可能是公司高层决策者,可能是业务部门的分析人员,技术人员对于业务的理解不会面面俱到,在项目过程中,有问题需要用户及时参与答疑,所以,在项目开启之前,确定项目参与角色,职责也是很重要的一个环节。

4.设计阶段,按照经典的三层模型,业务模型,逻辑模型,技术模型,每层进行明确,可以进行poc验证

5.开发阶段团队内的写作问题,公共维度的调用,数据加载的策略,原始数据的清洗,宽表字段的设计,分析主题的划分等。

6.测实阶段,内部首先要测试完全,场景覆盖度要到,如果开发完成直接交付用户进行测试,测试bug很多,则用户对项目产生质疑。

7.上线后的跟踪工作,测试也无法保障百分百的场景覆盖,在实际使用过程中,经常会有这样那样的新场景出现,所以要做好跟踪,对于未覆盖的场景,提供手工处理方法,如果有资源,就在后续的版本进行迭代优化。

数仓的实施是一个复杂的过程,三言两语无法完全说清楚,总之有几条重要的原则前提是可以共同遵守的,项目的成功需要各方面的配合。

相关推荐
workflower5 小时前
以光量子为例,详解量子获取方式
数据仓库·人工智能·软件工程·需求分析·量子计算·软件需求
weixin_472339466 小时前
Doris查询Hive数据:实现高效跨数据源分析的实践指南
数据仓库·hive·hadoop
SelectDB技术团队1 天前
从 ClickHouse、Druid、Kylin 到 Doris:网易云音乐 PB 级实时分析平台降本增效
大数据·数据仓库·clickhouse·kylin·实时分析
Leo.yuan1 天前
API是什么意思?如何实现开放API?
大数据·运维·数据仓库·人工智能·信息可视化
workflower2 天前
量子比特实现方式
数据仓库·服务发现·需求分析·量子计算·软件需求
青春之我_XP2 天前
【基于阿里云搭建数据仓库(离线)】Data Studio创建资源与函数
大数据·数据仓库·sql·dataworks·maxcompute·data studio
Leo.yuan2 天前
实时数据仓库是什么?数据仓库设计怎么做?
大数据·数据库·数据仓库·数据分析·spark
涤生大数据4 天前
Apache Doris 在数据仓库中的作用与应用实践
数据仓库·apache·doris
IT成长日记4 天前
【Doris基础】Apache Doris vs 传统数据仓库:架构与性能的全面对比
数据仓库·架构·doris·doris vs 传统数据仓库
xx155802862xx4 天前
hive聚合函数多行合并
数据仓库·hive·hadoop