SM4对称加密算法

背景

这篇文章主要是记录下,sm4密钥生成的过程。因为对称加密暂时没什么好说的,分组加密的模式ECB和CBC等,优劣如果大家有疑问可以自行百度下。

先说下背景,是因为项目需要改造为sm4的前后端加解密算法,然后和前端同事一起改造。

问题

涉及到128bits的密钥生成出现了岔子,导致前端生成的密钥后端无法解密了,报的错误就是:密钥不是128bits。原因是前端随机生成了32长度的字符串,但却一直报上面的错误!由此,对密钥的生成产生了一些疑问。最终搞清楚了,下面说下这个过程。

密钥生成

先来科普下小常识,8bits=1byte,就是8位等于1字节,2个字节等于一个字符。

那sm4需要的是128bits的字符串,那怎么生成32长度字符串呢?那32长度的字符串是怎么来的呢?看代码很容易就看出来了。

java 复制代码
new String(Hex.encodeHex(generateKey(DEFAULT_KEY_SIZE), false))

这段代码可以分三个来看:

java 复制代码
byte[] key = generateKey(DEFAULT_KEY_SIZE);// length = 16
char[] keyCharArr = Hex.encodeHex(key, false);// length = 32
new String(keyCharArr , false));// length = 32

这就是说:随机来128比特的二进制,得到16字节数组,再用Hex把16字节的数组转化为32长度的字符数组,注意1字节=2个十六进制字符,所以到此生成了32长度的字符串。

注意!!!

按照这个思路反推前端同事随机生成32长度字符串,32字符理论上能推回是128bits,但是套到代码里确没有如愿!后来发现了问题,

十六进制(简写为hex或下标16)是一种基数为16的计数系统,逢16进1。通常用数字0、1、2、3、4、5、6、7、8、9和字母A、B、C、D、E、F(或其大写形式A~F)表示,其中,A~F表示10~15,这些称作十六进制数字

问题就在这里,随机生成的字符串超过了F,用到了其他的字母,导致无法反推,改为按照十六进制的正常表示生成随机字符串就没问题了。

SM4实现

Sm4加密算法Java工具类代码如下:

java 复制代码
import org.apache.commons.codec.binary.Hex;
import org.bouncycastle.jce.provider.BouncyCastleProvider;
import org.bouncycastle.pqc.math.linearalgebra.ByteUtils;

import javax.crypto.Cipher;
import javax.crypto.KeyGenerator;
import javax.crypto.spec.SecretKeySpec;
import java.security.Key;
import java.security.SecureRandom;
import java.security.Security;
import java.util.Arrays;

public class Sm4Util {
    static {
        Security.addProvider(new BouncyCastleProvider());
    }

    private static final String ENCODING = "UTF-8";
    public static final String ALGORITHM_NAME = "SM4";
    // 加密算法/分组加密模式/分组填充方式
    // PKCS5Padding-以8个字节为一组进行分组加密
    // 定义分组加密模式使用:PKCS5Padding
    public static final String ALGORITHM_NAME_ECB_PADDING = "SM4/ECB/PKCS5Padding";
    // 128-32位16进制;256-64位16进制
    public static final int DEFAULT_KEY_SIZE = 128;

    /**
     * 自动生成密钥
     *
     * @return
     * @explain
     */
    public static String generateKey() throws Exception {
        return new String(Hex.encodeHex(generateKey(DEFAULT_KEY_SIZE), false));
    }

    /**
     * @param keySize
     * @return
     * @throws Exception
     * @explain
     */
    public static byte[] generateKey(int keySize) throws Exception {
        KeyGenerator kg = KeyGenerator.getInstance(ALGORITHM_NAME, BouncyCastleProvider.PROVIDER_NAME);
        kg.init(keySize, new SecureRandom());
        return kg.generateKey().getEncoded();
    }

    /**
     * 生成ECB暗号
     *
     * @param algorithmName 算法名称
     * @param mode          模式
     * @param key
     * @return
     * @throws Exception
     * @explain ECB模式(电子密码本模式:Electronic codebook)
     */
    private static Cipher generateEcbCipher(String algorithmName, int mode, byte[] key) throws Exception {
        Cipher cipher = Cipher.getInstance(algorithmName, BouncyCastleProvider.PROVIDER_NAME);
        Key sm4Key = new SecretKeySpec(key, ALGORITHM_NAME);
        cipher.init(mode, sm4Key);
        return cipher;
    }

    /**
     * sm4加密
     *
     * @param hexKey   16进制密钥(忽略大小写)
     * @param paramStr 待加密字符串
     * @return 返回16进制的加密字符串
     * @explain 加密模式:ECB
     * 密文长度不固定,会随着被加密字符串长度的变化而变化
     */
    public static String encryptEcb(String hexKey, String paramStr) {
        try {
            String cipherText = "";
            // 16进制字符串-->byte[]
            byte[] keyData = ByteUtils.fromHexString(hexKey);
            // String-->byte[]
            byte[] srcData = paramStr.getBytes(ENCODING);
            // 加密后的数组
            byte[] cipherArray = encrypt_Ecb_Padding(keyData, srcData);
            // byte[]-->hexString
            cipherText = ByteUtils.toHexString(cipherArray);
            return cipherText;
        } catch (Exception e) {
            return paramStr;
        }
    }

    /**
     * 加密模式之Ecb
     *
     * @param key
     * @param data
     * @return
     * @throws Exception
     * @explain
     */
    public static byte[] encrypt_Ecb_Padding(byte[] key, byte[] data) throws Exception {
        Cipher cipher = generateEcbCipher(ALGORITHM_NAME_ECB_PADDING, Cipher.ENCRYPT_MODE, key);
        return cipher.doFinal(data);
    }

    /**
     * sm4解密
     *
     * @param hexKey     16进制密钥
     * @param cipherText 16进制的加密字符串(忽略大小写)
     * @return 解密后的字符串
     * @throws Exception
     * @explain 解密模式:采用ECB
     */
    public static String decryptEcb(String hexKey, String cipherText) {
        // 用于接收解密后的字符串
        String decryptStr = "";
        // hexString-->byte[]
        byte[] keyData = ByteUtils.fromHexString(hexKey);
        // hexString-->byte[]
        byte[] cipherData = ByteUtils.fromHexString(cipherText);
        // 解密
        byte[] srcData = new byte[0];
        try {
            srcData = decrypt_Ecb_Padding(keyData, cipherData);
            // byte[]-->String
            decryptStr = new String(srcData, ENCODING);
        } catch (Exception e) {
            e.printStackTrace();
            /*解密失败,返回原报文*/
            return cipherText;
        }
        return decryptStr;
    }

    /**
     * 解密
     *
     * @param key
     * @param cipherText
     * @return
     * @throws Exception
     * @explain
     */
    public static byte[] decrypt_Ecb_Padding(byte[] key, byte[] cipherText) throws Exception {
        Cipher cipher = generateEcbCipher(ALGORITHM_NAME_ECB_PADDING, Cipher.DECRYPT_MODE, key);
        return cipher.doFinal(cipherText);
    }

    /**
     * 校验加密前后的字符串是否为同一数据
     *
     * @param hexKey     16进制密钥(忽略大小写)
     * @param cipherText 16进制加密后的字符串
     * @param paramStr   加密前的字符串
     * @return 是否为同一数据
     * @throws Exception
     * @explain
     */
    public static boolean verifyEcb(String hexKey, String cipherText, String paramStr) throws Exception {
        // 用于接收校验结果
        boolean flag = false;
        // hexString-->byte[]
        byte[] keyData = ByteUtils.fromHexString(hexKey);
        // 将16进制字符串转换成数组
        byte[] cipherData = ByteUtils.fromHexString(cipherText);
        // 解密
        byte[] decryptData = decrypt_Ecb_Padding(keyData, cipherData);
        // 将原字符串转换成byte[]
        byte[] srcData = paramStr.getBytes(ENCODING);
        // 判断2个数组是否一致
        flag = Arrays.equals(decryptData, srcData);
        return flag;
    }

}
相关推荐
Theodore_10223 小时前
4 设计模式原则之接口隔离原则
java·开发语言·设计模式·java-ee·接口隔离原则·javaee
冰帝海岸4 小时前
01-spring security认证笔记
java·笔记·spring
世间万物皆对象5 小时前
Spring Boot核心概念:日志管理
java·spring boot·单元测试
没书读了5 小时前
ssm框架-spring-spring声明式事务
java·数据库·spring
小二·5 小时前
java基础面试题笔记(基础篇)
java·笔记·python
开心工作室_kaic6 小时前
ssm161基于web的资源共享平台的共享与开发+jsp(论文+源码)_kaic
java·开发语言·前端
懒洋洋大魔王6 小时前
RocketMQ的使⽤
java·rocketmq·java-rocketmq
武子康6 小时前
Java-06 深入浅出 MyBatis - 一对一模型 SqlMapConfig 与 Mapper 详细讲解测试
java·开发语言·数据仓库·sql·mybatis·springboot·springcloud
转世成为计算机大神6 小时前
易考八股文之Java中的设计模式?
java·开发语言·设计模式
qq_327342737 小时前
Java实现离线身份证号码OCR识别
java·开发语言