数据分析-Pandas分类数据的比较如何避坑
数据分析和处理中,难免会遇到各种数据,那么数据呈现怎样的规律呢?不管金融数据,风控数据,营销数据等等,莫不如此。如何通过图示展示数据的规律?
数据表,时间序列数据在数据分析建模中很常见,例如天气预报,空气状态监测,股票交易等金融场景。数据分析过程中重新调整,重塑数据表是很重要的技巧,此处选择Titanic数据,以及巴黎、伦敦欧洲城市空气质量监测 N O 2 NO_2 NO2数据作为样例。
数据分析
本文用到的样例数据:
样例代码:
导入关键模块
python
import pandas as pd
import numpy as np
实验数据分析处理,股票序列,时间序列,信号序列,有时候表格的数据并不完全是数值类型,也有可能是字符串,或者其他数据,需要做分类处理。pandas如何控制数据分类处理呢?需要配置哪些参数?
分类数据的比较
有三种情况,可以将分类数据与其他对象进行比较:
- 与列表类的比较相等,例如相同长度的类似列表的对象(如列表、序列、数组...)。
- 分类数据之间的比较,它们对应数值是否相同,比较操作包括
==``!=``>``>=``<``<=
。 - 分类数据的所有数值与标量的比较。
所有其他的比较,尤其是两个类别的"不相等"比较,具有不同的 类别或具有任何类似列表的对象的分类将引发 错误.TypeError
python
In [112]: cat = pd.Series([1, 2, 3]).astype(CategoricalDtype([3, 2, 1], ordered=True))
In [113]: cat_base = pd.Series([2, 2, 2]).astype(CategoricalDtype([3, 2, 1], ordered=True))
In [114]: cat_base2 = pd.Series([2, 2, 2]).astype(CategoricalDtype(ordered=True))
In [115]: cat
Out[115]:
0 1
1 2
2 3
dtype: category
Categories (3, int64): [3 < 2 < 1]
In [116]: cat_base
Out[116]:
0 2
1 2
2 2
dtype: category
Categories (3, int64): [3 < 2 < 1]
In [117]: cat_base2
Out[117]:
0 2
1 2
2 2
dtype: category
Categories (1, int64): [2]
具有相同类别和顺序特性的分类比较,或与标量进行比较:
python
In [118]: cat > cat_base
Out[118]:
0 True
1 False
2 False
dtype: bool
In [119]: cat > 2
Out[119]:
0 True
1 False
2 False
dtype: bool
与类似列表对象的相等比较,适用于任何具有相同长度的类似列表对象,和标量的比较:
python
In [120]: cat == cat_base
Out[120]:
0 False
1 True
2 False
dtype: bool
In [121]: cat == np.array([1, 2, 3])
Out[121]:
0 True
1 True
2 True
dtype: bool
In [122]: cat == 2
Out[122]:
0 False
1 True
2 False
dtype: bool
当类别不相同时,比较就会报错:
In [123]: try:
.....: cat > cat_base2
.....: except TypeError as e:
.....: print("TypeError:", str(e))
.....:
TypeError: Categoricals can only be compared if 'categories' are the same.
但是,如果要做不相等的比较,比如分类数据与类似列表的对象进行"不相等"比较,就需要显式转换为原始数据再做比较。:
python
In [124]: base = np.array([1, 2, 3])
In [125]: try:
.....: cat > base
.....: except TypeError as e:
.....: print("TypeError:", str(e))
.....:
TypeError: Cannot compare a Categorical for op __gt__ with type <class 'numpy.ndarray'>.
If you want to compare values, use 'np.asarray(cat) <op> other'.
In [126]: np.asarray(cat) > base
Out[126]: array([False, False, False])
当比较具有相同类别的两个无序分类时,不考虑顺序:
python
In [127]: c1 = pd.Categorical(["a", "b"], categories=["a", "b"], ordered=False)
In [128]: c2 = pd.Categorical(["a", "b"], categories=["b", "a"], ordered=False)
In [129]: c1 == c2
Out[129]: array([ True, True])
以上代码只是一个简单示例,示例代码中的表达式可以根据实际问题进行修改。
后面介绍下其他的展示形式。
觉得有用 收藏 收藏 收藏
点个赞 点个赞 点个赞
End
GPT专栏文章:
GPT实战系列-ChatGLM3本地部署CUDA11+1080Ti+显卡24G实战方案
GPT实战系列-LangChain + ChatGLM3构建天气查询助手
GPT实战系列-大模型为我所用之借用ChatGLM3构建查询助手
GPT实战系列-P-Tuning本地化训练ChatGLM2等LLM模型,到底做了什么?(二)
GPT实战系列-P-Tuning本地化训练ChatGLM2等LLM模型,到底做了什么?(一)
GPT实战系列-ChatGLM2部署Ubuntu+Cuda11+显存24G实战方案