0201线性方程组和矩阵-矩阵及其运算-线性代数

文章目录

一、线性方程组

设有 n 个未知数 m n个未知数m n个未知数m个方程的线性方程组
{ a 11 x 1 + a 12 x 2 + ⋯ + a 1 n x n = b 1 , a 21 x 1 + a 22 x 2 + ⋯ + a 2 n x n = b 2 , ⋯ a m 1 x 1 + a m 2 x 2 + ⋯ + a m n x n = b m , \begin{cases} a_{11}x_1+a_{12}x_2+\cdots+a_{1n}x_n=b_1,\\ a_{21}x_1+a_{22}x_2+\cdots+a_{2n}x_n=b_2,\\ \cdots\\ a_{m1}x_1+a_{m2}x_2+\cdots+a_{mn}x_n=b_m,\\ \end{cases} ⎩ ⎨ ⎧a11x1+a12x2+⋯+a1nxn=b1,a21x1+a22x2+⋯+a2nxn=b2,⋯am1x1+am2x2+⋯+amnxn=bm,

其中 a i j 是第 i 个方程的第 j a_{ij}是第i个方程的第j aij是第i个方程的第j个未知数的系数, b i 是第 i b_i是第i bi是第i个方程的常数项, i = 1 , 2 , ⋯   , m ; j = 1 , 2 , ⋯   , n i=1,2,\cdots,m;\quad j=1,2,\cdots,n i=1,2,⋯,m;j=1,2,⋯,n。

当常数项 b 1 , b 2 , ⋯   , b n b_1,b_2,\cdots,b_n b1,b2,⋯,bn不全为零时,线性方程组(1)叫做 n n n元非齐次线性方程组,当 b 1 , b 2 , ⋯   , b n b_1,b_2,\cdots,b_n b1,b2,⋯,bn全为零时,(1)式称为 n n n元其次线性方程组。

对于线性方程组需要讨论以下问题:

  1. 它是否有解?
  2. 在有解时,它是否唯一?
  3. 如果有多个解,如何求出它的所有解?

对于线性方程组(1)上述问题的答案取决于它的 m × n 个系数 a i j ( i = 1 , 2 , ⋯   , m ; j = 1 , 2 , ⋯   , n ) m\times n个系数a_{ij}(i=1,2,\cdots,m;j=1,2,\cdots,n) m×n个系数aij(i=1,2,⋯,m;j=1,2,⋯,n)和右端的常数项 b 1 , b 2 , ⋯   , b n b_1,b_2,\cdots,b_n b1,b2,⋯,bn所构成的 m 行 n + 1 m行n+1 m行n+1列矩形数表:
a 11 a 12 ⋯ a 1 n b 1 a 21 a 22 ⋯ a 2 n b 2 ⋮ ⋮ ⋮ ⋮ a m 1 a m 2 ⋯ a m n b m \begin{matrix} a_{11}&a_{12}&\cdots&a_{1n}&b_1\\ a_{21}&a_{22}&\cdots&a_{2n}&b_2\\ \vdots&\vdots&&\vdots&\vdots\\ a_{m1}&a_{m2}&\cdots&a_{mn}&b_m\\ \end{matrix} a11a21⋮am1a12a22⋮am2⋯⋯⋯a1na2n⋮amnb1b2⋮bm

这里横排称为行,竖排称为列;对于齐次线性方程相应问题的答案完全取决于他的 m × n 个系数 a i j ( i = 1 , 2 , ⋯   , m ; j = 1 , 2 , ⋯   , n ) m\times n个系数a_{ij}(i=1,2,\cdots,m;j=1,2,\cdots,n) m×n个系数aij(i=1,2,⋯,m;j=1,2,⋯,n)所构成的 m 行 n 列 m行n列 m行n列矩形数表:
a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ a m 1 a m 2 ⋯ a m n \begin{matrix} a_{11}&a_{12}&\cdots&a_{1n}\\ a_{21}&a_{22}&\cdots&a_{2n}\\ \vdots&\vdots&&\vdots\\ a_{m1}&a_{m2}&\cdots&a_{mn}\\ \end{matrix} a11a21⋮am1a12a22⋮am2⋯⋯⋯a1na2n⋮amn

二、矩阵的定义

定义1 由 m × n m\times n m×n个数 a i j ( i = 1 , 2 , ⋯   , n ; j = 1 , 2 , ⋯   , n ) a_{ij}(i=1,2,\cdots,n;j=1,2,\cdots,n) aij(i=1,2,⋯,n;j=1,2,⋯,n)排成的 m m m行 n n n列的数表
a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ a m 1 a m 2 ⋯ a m n \begin{matrix} a_{11}&a_{12}&\cdots&a_{1n}\\ a_{21}&a_{22}&\cdots&a_{2n}\\ \vdots&\vdots&&\vdots\\ a_{m1}&a_{m2}&\cdots&a_{mn}\\ \end{matrix} a11a21⋮am1a12a22⋮am2⋯⋯⋯a1na2n⋮amn

称为 m 行 n 列 m行n列 m行n列矩阵,简称 m × n m\times n m×n矩阵,记作
A = ( a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ a m 1 a m 2 ⋯ a m n ) A=\begin{pmatrix} a_{11}&a_{12}&\cdots&a_{1n}\cr a_{21}&a_{22}&\cdots&a_{2n}\cr \vdots&\vdots&&\vdots\cr a_{m1}&a_{m2}&\cdots&a_{mn}\cr \end{pmatrix} A= a11a21⋮am1a12a22⋮am2⋯⋯⋯a1na2n⋮amn

这 m × n m\times n m×n个数称为矩阵A的元素,简称为元,数 a i j a_{ij} aij位于矩阵A的第i行第j列,称为矩阵A的 ( i , j ) (i,j) (i,j)元,以数 a i j 为 ( i , j ) a_{ij}为(i,j) aij为(i,j)元的矩阵简记作 a i j 或者 ( a i j ) m × n a_{ij}或者(a_{ij}){m\times n} aij或者(aij)m×n, m × n m\times n m×n阶矩阵也记作 A m × n A{m\times n} Am×n
元素是实数的矩阵称为实矩阵,元素是复数的矩阵称为复矩阵。

**tips:**如无特殊说明,都为实矩阵。

行数和列数都等于 n n n的矩阵称为 n n n阶矩阵或 n n n阶方阵。 n 阶矩阵也记作 A n n阶矩阵也记作A_n n阶矩阵也记作An
只有一行的矩阵 A = ( a 1 a 2 ⋯ a n ) A=(a_1\quad a_2\quad \cdots\quad a_n) A=(a1a2⋯an)称为行矩阵,又称行向量。只有一列的矩阵
B = ( b 1 b 2 ⋮ b m ) B=\begin{pmatrix} b_1\cr b_2\cr \vdots\cr b_m \end{pmatrix} B= b1b2⋮bm

称为列矩阵,又称列向量。
两个矩阵行数相等、列数也相等时,就称它们是同型矩阵。如果 A = ( a i j ) 与 B = ( b i j ) A=(a_{ij})与B=(b_{ij}) A=(aij)与B=(bij)是同行矩阵,并且它们的元素相等,即

a i j = b i j ( i = 1 , 2 , ⋯   , m ; j = 1 , 2 , ⋯ n ) a_{ij}=b_{ij}(i=1,2,\cdots,m;j=1,2,\cdots n) aij=bij(i=1,2,⋯,m;j=1,2,⋯n)

那么就称矩阵A和矩阵B相等,记作

A = B A=B A=B
元素都为零的矩阵称为零矩阵,记作O.

tips:不同型的零矩阵是不同的。

对于非齐次线性方程组:
{ a 11 x 1 + a 12 x 2 + ⋯ + a 1 n x n = b 1 , a 21 x 1 + a 22 x 2 + ⋯ + a 2 n x n = b 2 , ⋯ a m 1 x 1 + a m 2 x 2 + ⋯ + a m n x n = b m , \begin{cases} a_{11}x_1+a_{12}x_2+\cdots+a_{1n}x_n=b_1,\\ a_{21}x_1+a_{22}x_2+\cdots+a_{2n}x_n=b_2,\\ \cdots\\ a_{m1}x_1+a_{m2}x_2+\cdots+a_{mn}x_n=b_m,\\ \end{cases} ⎩ ⎨ ⎧a11x1+a12x2+⋯+a1nxn=b1,a21x1+a22x2+⋯+a2nxn=b2,⋯am1x1+am2x2+⋯+amnxn=bm,

有如下几个矩阵:
A = ( a i j ) x = ( x 1 x 2 ⋮ x n ) b = ( b 1 b 2 ⋮ b m ) B = ( a 11 a 12 ⋯ a 1 n b 1 a 21 a 22 ⋯ a 2 n b 2 ⋮ ⋮ ⋮ ⋮ a m 1 a m 2 ⋯ a m n b m ) A=(a_{ij})\\ x=\begin{pmatrix} x_1\cr x_2\cr \vdots\\ x_n\\ \end{pmatrix}\\ b=\begin{pmatrix} b_1\cr b_2\cr \vdots\\ b_m\\ \end{pmatrix}\\ B=\begin{pmatrix} a_{11}&a_{12}&\cdots&a_{1n}&b_1\\ a_{21}&a_{22}&\cdots&a_{2n}&b_2\\ \vdots&\vdots&&\vdots&\vdots\\ a_{m1}&a_{m2}&\cdots&a_{mn}&b_m\\ \end{pmatrix} A=(aij)x= x1x2⋮xn b= b1b2⋮bm B= a11a21⋮am1a12a22⋮am2⋯⋯⋯a1na2n⋮amnb1b2⋮bm

其中A成为系数矩阵,x成为未知数矩阵,b成为常数项矩阵,B成为增广矩阵。

例2 某长向三个商店(编号1,2,3)发送四种产品(编号一、二、三、四)的数量可列成矩阵
行为商店编号,列为产品编号 A = ( a 11 a 12 a 13 a 14 a 21 a 22 a 23 a 34 a 31 a 32 a 33 a 34 ) 行为商店编号,列为产品编号\\ A=\begin{pmatrix} a_{11}&a_{12}&a_{13}&a_{14}\\ a_{21}&a_{22}&a_{23}&a_{34}\\ a_{31}&a_{32}&a_{33}&a_{34}\\ \end{pmatrix} 行为商店编号,列为产品编号A= a11a21a31a12a22a32a13a23a33a14a34a34

其中 a i j a_{ij} aij为工厂向第 i i i家商店发送的第 j j j种商品。

这四种商品的单价即单件质量也可列成矩阵
行表示产品编号,列表示(单价、单件质量) A = ( b 11 b 12 b 21 b 22 b 31 b 32 b 41 b 42 ) 行表示产品编号,列表示(单价、单件质量)\\ A=\begin{pmatrix} b_{11}&b_{12}\\ b_{21}&b_{22}\\ b_{31}&b_{32}\\ b_{41}&b_{42}\\ \end{pmatrix} 行表示产品编号,列表示(单价、单件质量)A= b11b21b31b41b12b22b32b42

其中 b i 1 b_{i1} bi1为第 i i i种商品的单价, b i 2 b_{i2} bi2表示第 i i i种商品的单件质量。

例3 四个城市间的单向航线如图2.1所示,若令
a i j = { 1 , 从市到 j 市有 1 条单向航线, 0 , 从市到 j 市没有单向航线, a_{ij}=\begin{cases} 1,从市到j市有1条单向航线,\\ 0,从市到j市没有单向航线,\\ \end{cases} aij={1,从市到j市有1条单向航线,0,从市到j市没有单向航线,

则图2.1可用矩阵表示为

则图 2.1 可用矩阵表示为 ( 0 1 1 1 1 0 0 0 0 1 0 0 1 0 1 0 ) 则图2.1可用矩阵表示为\\ \begin{pmatrix} 0&1&1&1\\ 1&0&0&0\\ 0&1&0&0\\ 1&0&1&0\\ \end{pmatrix} 则图2.1可用矩阵表示为 0101101010011000

一般地,若干个点之间的单向通道都可用这样的矩阵表示。

例4 n n n个变量 x 1 , x 2 , ⋯   , x n x_1,x_2,\cdots,x_n x1,x2,⋯,xn与 m m m个变量 y 1 , y 2 , ⋯   , y m y_1,y_2,\cdots,y_m y1,y2,⋯,ym之间的关系式
{ y 1 = a 11 x 1 + a 12 x 2 + ⋯ + a 1 n x n , y 2 = a 21 x 1 + a 22 x 2 + ⋯ + a 2 n x n , ⋯ ⋯ ⋯ y m = a m 1 x 1 + a m 2 x 2 + ⋯ + a m n x n \begin{cases} y_1=a_{11}x_1+a_{12}x_2+\cdots+a_{1n}x_n,\\ y_2=a_{21}x_1+a_{22}x_2+\cdots+a_{2n}x_n,\\ \cdots\cdots\cdots\\ y_m=a_{m1}x_1+a_{m2}x_2+\cdots+a_{mn}x_n\\ \end{cases} ⎩ ⎨ ⎧y1=a11x1+a12x2+⋯+a1nxn,y2=a21x1+a22x2+⋯+a2nxn,⋯⋯⋯ym=am1x1+am2x2+⋯+amnxn

表示一个从变量 x 1 , x 2 , ⋯   , x n x_1,x_2,\cdots,x_n x1,x2,⋯,xn到变量 y 1 , y 2 , ⋯   , y m y_1,y_2,\cdots,y_m y1,y2,⋯,ym的线性变换 ,其中 a i j a_{ij} aij为常数。线性变换的系数 a i j a_{ij} aij构成矩阵 A = ( a i j ) m × n A=(a_{ij})_{m\times n} A=(aij)m×n.

tips:线性变换与矩阵之间存在着一一对应的关系。

例如线性变换
{ y 1 = λ x 1 , y 2 = λ x 2 , ⋯ y n = λ x n \begin{cases} y_1=\lambda x_1,\\ y_2=\lambda x_2,\\ \cdots\\ y_n=\lambda x_n \end{cases} ⎩ ⎨ ⎧y1=λx1,y2=λx2,⋯yn=λxn

对应n阶方阵:
A = ( λ 1 0 ⋯ 0 0 λ 2 ⋯ 0 ⋮ ⋮ ⋱ 0 0 0 ⋯ λ n ) A=\begin{pmatrix} \lambda_1&0&\cdots&0\\ 0&\lambda_2&\cdots&0\\ \vdots&\vdots&\ddots&0\\ 0&0&\cdots&\lambda_n\\ \end{pmatrix} A= λ10⋮00λ2⋮0⋯⋯⋱⋯000λn

这个方阵特点:从左上角到右下角的直线(叫做对角线)以外的元素都是0.这种方阵称为对角矩阵,简称对角阵,记作

A = d i a g ( λ 1 , λ 2 , ⋯   , λ n ) A=diag(\lambda_1,\lambda_2,\cdots,\lambda_n) A=diag(λ1,λ2,⋯,λn)

特别当 λ 1 = λ 2 = ⋯ = λ n = 1 \lambda_1=\lambda_2=\cdots=\lambda_n=1 λ1=λ2=⋯=λn=1时的线性变换叫做恒等变换,它对应的n阶方阵
A = ( 1 0 ⋯ 0 0 1 ⋯ 0 ⋮ ⋮ ⋱ 0 0 0 ⋯ 1 ) A=\begin{pmatrix} 1&0&\cdots&0\\ 0&1&\cdots&0\\ \vdots&\vdots&\ddots&0\\ 0&0&\cdots&1\\ \end{pmatrix} A= 10⋮001⋮0⋯⋯⋱⋯0001

叫做n阶单位矩阵,简称单位阵。矩阵特点:对角线上的元素都是1,其他元素都是0,即单位阵 E 的 ( i , j ) 元 e i j E的(i,j)元e_{ij} E的(i,j)元eij为
e i j = { 1 , 当 i = j , 0 , 当 i ≠ j ( i , j = 1 , 2 , ⋯   , n ) e_{ij}=\begin{cases} 1,当i=j,\\ 0,当i\not=j \end{cases} (i,j=1,2,\cdots,n) eij={1,当i=j,0,当i=j(i,j=1,2,⋯,n)

结语

❓QQ:806797785

⭐️文档笔记地址 https://github.com/gaogzhen/math

参考:

1\]同济大学数学系.工程数学.线性代数 第6版 \[M\].北京:高等教育出版社,2014.6.p24-29. \[2\][同济六版《线性代数》全程教学视频](https://www.bilibili.com/video/BV1864y1T7Ks)\[CP/OL\].2020-02-07.p6.

相关推荐
Alessio Micheli8 小时前
基于几何布朗运动的股价预测模型构建与分析
线性代数·机器学习·概率论
HappyAcmen10 小时前
线代第二章矩阵第八节逆矩阵、解矩阵方程
笔记·学习·线性代数·矩阵
Alessio Micheli13 小时前
奇怪的公式
笔记·线性代数
Despacito0o1 天前
RGB矩阵照明系统详解及WS2812配置指南
c语言·线性代数·矩阵·计算机外设·qmk
唐山柳林1 天前
现代化水库运行管理矩阵平台如何建设?
线性代数·矩阵
SZ1701102312 天前
泰勒展开式
线性代数·概率论
Akiiiira4 天前
【日撸 Java 三百行】Day 7(Java的数组与矩阵元素相加)
线性代数·矩阵
18538162800余--6 天前
短视频矩阵系统批量剪辑模式开发详解,支持OEM
线性代数·ui·矩阵·音视频·概率论
HappyAcmen6 天前
线代第二章矩阵第五、六、七节矩阵的转置、方阵的行列式、方阵的伴随矩阵
笔记·学习·线性代数·矩阵
18538162800余--6 天前
矩阵系统源码搭建 UI 设计开发指南,支持OEM
线性代数·ui·矩阵