目标
- 利用yolo模型进行目标检测的方法
- 完成目标检测功能的实现
整个流程如下:
基于OPenCV中的DNN模块
- 加载已训练好的yolov3模型及其权重参数
- 将要处理的图像转换成输入到模型中的blobs
- 利用模型对目标进行检测
- 遍历检测结果
- 应用非极大值抑制
- 绘制最终检测结果,并存入到ndarray中,供目标追踪使用。
代码如下:
1.加载yolov3模型及其权重参数
# 1.加载可以识别物体的名称,将其存放在LABELS中,一共有80种,在这我们只使用car
labelsPath = "./yolo-coco/coco.names"
LABELS = open(labelsPath).read().strip().split("\n")
# 设置随机数种子,生成多种不同的颜色,当一个画面中有多个目标时,使用不同颜色的框将其框起来
np.random.seed(42)
COLORS = np.random.randint(0, 255, size=(200, 3),dtype="uint8")
# 加载已训练好的yolov3网络的权重和相应的配置数据
weightsPath = "./yolo-coco/yolov3.weights"
configPath = "./yolo-coco/yolov3.cfg"
# 加载好数据之后,开始利用上述数据恢复yolo神经网络
net = cv2.dnn.readNetFromDarknet(configPath, weightsPath)
# 获取YOLO中每一网络层的名称:['conv_0', 'bn_0', 'relu_0', 'conv_1', 'bn_1', 'relu_1', 'conv_2', 'bn_2', 'relu_2'...]
ln = net.getLayerNames()
# 获取输出层在网络中的索引位置,并以列表的形式:['yolo_82', 'yolo_94', 'yolo_106']
ln = [ln[i[0] - 1] for i in net.getUnconnectedOutLayers()]
2.要处理的图像转换成输入到模型中的blobs
# 2. 读取图像
frame = cv2.imread("./images/car1.jpg")
# 视频的宽度和高度,即帧尺寸
(W, H) = (None, None)
if W is None or H is None:
(H, W) = frame.shape[:2]
# 根据输入图像构造blob,利用OPenCV进行深度网路的计算时,一般将图像转换为blob形式,对图片进行预处理,包括缩放,减均值,通道交换等
# 还可以设置尺寸,一般设置为在进行网络训练时的图像的大小
blob = cv2.dnn.blobFromImage(frame, 1 / 255.0, (416, 416), swapRB=True, crop=False)
3.利用模型对目标进行检测
# 3.将blob输入到前向网络中,并进行预测
net.setInput(blob)
start = time.time()
# yolo前馈计算,获取边界和相应的概率
# 输出layerOutsputs介绍:
# 是YOLO算法在图片中检测到的bbx的信息
# 由于YOLO v3有三个输出,也就是上面提到的['yolo_82', 'yolo_94', 'yolo_106']
# 因此layerOutsputs是一个长度为3的列表
# 其中,列表中每一个元素的维度是(num_detection, 85)
# num_detections表示该层输出检测到bbx的个数
# 85:因为该模型在COCO数据集上训练,[5:]表示类别概率;[0:4]表示bbx的位置信息;[5]表示置信度
layerOutputs = net.forward(ln)
4.遍历检测结果,获得检测框
# 下面对网络输出的bbx进行检查:
# 判定每一个bbx的置信度是否足够的高,以及执行NMS算法去除冗余的bbx
boxes = [] # 用于存放识别物体的框的信息,包括框的左上角横坐标x和纵坐标y以及框的高h和宽w
confidences = [] # 表示识别目标是某种物体的可信度
classIDs = [] # 表示识别的目标归属于哪一类,['person', 'bicycle', 'car', 'motorbike'....]
# 4. 遍历每一个输出层的输出
for output in layerOutputs:
# 遍历某个输出层中的每一个目标
for detection in output:
scores = detection[5:] # 当前目标属于某一类别的概率
classID = np.argmax(scores) # 目标的类别ID
confidence = scores[classID] # 得到目标属于该类别的置信度
# 只保留置信度大于0.3的边界框,若图片质量较差,可以将置信度调低一点
if confidence > 0.3:
# 将边界框的坐标还原至与原图片匹配,YOLO返回的是边界框的中心坐标以及边界框的宽度和高度
box = detection[0:4] * np.array([W, H, W, H])
(centerX, centerY, width, height) = box.astype("int") # 使用 astype("int") 对上述 array 进行强制类型转换,centerX:框的中心点横坐标, centerY:框的中心点纵坐标,width:框的宽度,height:框的高度
x = int(centerX - (width / 2)) # 计算边界框的左上角的横坐标
y = int(centerY - (height / 2)) # 计算边界框的左上角的纵坐标
# 更新检测到的目标框,置信度和类别ID
boxes.append([x, y, int(width), int(height)]) # 将边框的信息添加到列表boxes
confidences.append(float(confidence)) # 将识别出是某种物体的置信度添加到列表confidences
classIDs.append(classID) # 将识别物体归属于哪一类的信息添加到列表classIDs
5.非极大值抑制
# 5. 非极大值抑制
idxs = cv2.dnn.NMSBoxes(boxes, confidences, 0.5, 0.3)
6.最终检测结果,绘制,并存入到ndarray中,供目标追踪使用
# 6. 获得最终的检测结果
dets = [] # 存放检测框的信息,包括左上角横坐标,纵坐标,右下角横坐标,纵坐标,以及检测到的物体的置信度,用于目标跟踪
if len(idxs) > 0: # 存在检测框的话(即检测框个数大于0)
for i in idxs.flatten(): # 循环检测出的每一个box
# yolo模型可以识别很多目标,因为我们在这里只是识别车,所以只有目标是车的我们进行检测,其他的忽略
if LABELS[classIDs[i]] == "car":
(x, y) = (boxes[i][0], boxes[i][1]) # 得到检测框的左上角坐标
(w, h) = (boxes[i][2], boxes[i][3]) # 得到检测框的宽和高
cv2.rectangle(frame, (x, y), (x+w, y+h), (0,255,0), 2) # 将方框绘制在画面上
dets.append([x, y, x + w, y + h, confidences[i]]) # 将检测框的信息的放入dets中
# 设置数据类型,将整型数据转换为浮点数类型,且保留小数点后三位
np.set_printoptions(formatter={'float': lambda x: "{0:0.3f}".format(x)})
# 将检测框数据转换为ndarray,其数据类型为浮点型
dets = np.asarray(dets)
plt.imshow(frame[:,:,::-1])
在视频中进行目标检测:
labelsPath = "./yolo-coco/coco.names"
LABELS = open(labelsPath).read().strip().split("\n")
# 设置随机数种子,生成多种不同的颜色,当一个画面中有多个目标时,使用不同颜色的框将其框起来
np.random.seed(42)
COLORS = np.random.randint(0, 255, size=(200, 3),dtype="uint8")
# 加载已训练好的yolov3网络的权重和相应的配置数据
weightsPath = "./yolo-coco/yolov3.weights"
configPath = "./yolo-coco/yolov3.cfg"
# 加载好数据之后,开始利用上述数据恢复yolo神经网络
net = cv2.dnn.readNetFromDarknet(configPath, weightsPath)
# 获取YOLO中每一网络层的名称:['conv_0', 'bn_0', 'relu_0', 'conv_1', 'bn_1', 'relu_1', 'conv_2', 'bn_2', 'relu_2'...]
ln = net.getLayerNames()
# 获取输出层在网络中的索引位置,并以列表的形式:['yolo_82', 'yolo_94', 'yolo_106']
ln = [ln[i[0] - 1] for i in net.getUnconnectedOutLayers()]
"""
视频处理类
"""
# 初始化vediocapture类,参数指定打开的视频文件,也可以是摄像头
vs = cv2.VideoCapture('./input/test_1.mp4')
# 视频的宽度和高度,即帧尺寸
(W, H) = (None, None)
# 视频文件写对象
writer = None
try:
# 确定获取视频帧数的方式
prop = cv2.cv.CV_CAP_PROP_FRAME_COUNT if imutils.is_cv2() \
else cv2.CAP_PROP_FRAME_COUNT
# 获取视频的总帧数
total = int(vs.get(prop))
# 打印视频的帧数
print("[INFO] {} total frames in video".format(total))
except:
print("[INFO] could not determine # of frames in video")
print("[INFO] no approx. completion time can be provided")
total = -1
# 循环读取视频中的每一帧画面
while True:
# 读取帧:grabbed是bool,表示是否成功捕获帧,frame是捕获的帧
(grabbed, frame) = vs.read()
# 若未捕获帧,则退出循环
if not grabbed:
break
# 若W和H为空,则将第一帧画面的大小赋值给他
if W is None or H is None:
(H, W) = frame.shape[:2]
# 根据输入图像构造blob,利用OPenCV进行深度网路的计算时,一般将图像转换为blob形式,对图片进行预处理,包括缩放,减均值,通道交换等
# 还可以设置尺寸,一般设置为在进行网络训练时的图像的大小
blob = cv2.dnn.blobFromImage(frame, 1 / 255.0, (416, 416), swapRB=True, crop=False)
# 将blob输入到前向网络中
net.setInput(blob)
start = time.time()
# yolo前馈计算,获取边界和相应的概率
layerOutputs = net.forward(ln)
"""
输出layerOutsputs介绍:
是YOLO算法在图片中检测到的bbx的信息
由于YOLO v3有三个输出,也就是上面提到的['yolo_82', 'yolo_94', 'yolo_106']
因此layerOutsputs是一个长度为3的列表
其中,列表中每一个元素的维度是(num_detection, 85)
num_detections表示该层输出检测到bbx的个数
85:因为该模型在COCO数据集上训练,[5:]表示类别概率;[0:4]表示bbx的位置信息;[5]表示置信度
"""
end = time.time()
"""
下面对网络输出的bbx进行检查:
判定每一个bbx的置信度是否足够的高,以及执行NMS算法去除冗余的bbx
"""
boxes = [] # 用于存放识别物体的框的信息,包括框的左上角横坐标x和纵坐标y以及框的高h和宽w
confidences = [] # 表示识别目标是某种物体的可信度
classIDs = [] # 表示识别的目标归属于哪一类,['person', 'bicycle', 'car', 'motorbike'....]
# 遍历每一个输出层的输出
for output in layerOutputs:
# 遍历某个输出层中的每一个目标
for detection in output:
scores = detection[5:] # 当前目标属于某一类别的概率
"""
# scores = detection[5:] ---> [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
# 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
# 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
# 0. 0. 0. 0. 0. 0. 0. 0.]
# scores的大小应该是1*80,因为在训练yolo模型时是80类目标
"""
classID = np.argmax(scores) # 目标的类别ID
confidence = scores[classID] # 得到目标属于该类别的置信度
# 只保留置信度大于0.3的边界框,若图片质量较差,可以将置信度调低一点
if confidence > 0.3:
# 将边界框的坐标还原至与原图片匹配,YOLO返回的是边界框的中心坐标以及边界框的宽度和高度
box = detection[0:4] * np.array([W, H, W, H])
(centerX, centerY, width, height) = box.astype("int") # 使用 astype("int") 对上述 array 进行强制类型转换,centerX:框的中心点横坐标, centerY:框的中心点纵坐标,width:框的宽度,height:框的高度
x = int(centerX - (width / 2)) # 计算边界框的左上角的横坐标
y = int(centerY - (height / 2)) # 计算边界框的左上角的纵坐标
# 更新检测到的目标框,置信度和类别ID
boxes.append([x, y, int(width), int(height)]) # 将边框的信息添加到列表boxes
confidences.append(float(confidence)) # 将识别出是某种物体的置信度添加到列表confidences
classIDs.append(classID) # 将识别物体归属于哪一类的信息添加到列表classIDs
# 上一步中已经得到yolo的检测框,但其中会存在冗余的bbox,即一个目标对应多个检测框,所以使用NMS去除重复的检测框
# 利用OpenCV内置的NMS DNN模块实现即可实现非最大值抑制 ,所需要的参数是边界 框、 置信度、以及置信度阈值和NMS阈值
# 第一个参数是存放边界框的列表,第二个参数是存放置信度的列表,第三个参数是自己设置的置信度,第四个参数是关于threshold(阈值
# 返回的idxs是一个一维数组,数组中的元素是保留下来的检测框boxes的索引位置
idxs = cv2.dnn.NMSBoxes(boxes, confidences, 0.5, 0.3)
dets = [] # 存放检测框的信息,包括左上角横坐标,纵坐标,右下角横坐标,纵坐标,以及检测到的物体的置信度,用于目标跟踪
if len(idxs) > 0: # 存在检测框的话(即检测框个数大于0)
for i in idxs.flatten(): # 循环检测出的每一个box
# yolo模型可以识别很多目标,因为我们在这里只是识别车,所以只有目标是车的我们进行检测,其他的忽略
if LABELS[classIDs[i]] == "car":
(x, y) = (boxes[i][0], boxes[i][1]) # 得到检测框的左上角坐标
(w, h) = (boxes[i][2], boxes[i][3]) # 得到检测框的宽和高
dets.append([x, y, x + w, y + h, confidences[i]]) # 将检测框的信息的放入dets中
# 设置数据类型,将整型数据转换为浮点数类型,且保留小数点后三位
np.set_printoptions(formatter={'float': lambda x: "{0:0.3f}".format(x)})
# 将检测框数据转换为ndarray,其数据类型为浮点型
dets = np.asarray(dets)