NLP 笔记:LDA(训练篇)

1 前言:吉布斯采样

吉布斯采样的基本思想是,通过迭代的方式,逐个维度地更新所有变量的状态

1.1 举例 收拾东西

  • 假设我们现在有一个很乱的屋子,我们不知道东西应该放在哪里(绝对位置),但知道哪个和哪个应该比较近(相对位置)

我们每次选取一个物品,假设其他的位置都是正确的,那么这个应该放在哪个位置

比如:选取一个衣架,把他放到另一个衣架边上

衣服放到裤子边上

一步一步来,直到东西已经正确放置

2 LDA 的两个原则

一个文章中单词的主题越集中越好

同一个单词的主题越集中越好

那the这种词怎么办?这种不重要的词舍弃掉

3 LDA 目标

有了LDA的两个基本原则后,LDA的目标可以变为(颜色代表topic):

4 LDA 更新过程

首先随机给每个单词染色

对于第一个单词ball,假设其他单词颜色是正确的

首先看同一个文件里面,其他单词的颜色

然后看看同一个单词,在所有文件里面出现的颜色

他们的乘积就是对应的概率权重

但是,我们不希望出现绝对的零,我们对所有的权重加一个很小的值:

然后以乘积结果作为权重,采样,采到哪个,就染成什么颜色

以此类推,一个一个重新染色所有的单词

那怎么知道应该染成什么颜色呢?这个是人为做的

参考内容:

Training Latent Dirichlet Allocation: Gibbs Sampling (Part 2 of 2) (youtube.com)

相关推荐
ai产品老杨6 分钟前
解锁仓储智能调度、运输路径优化、数据实时追踪,全功能降本提效的智慧物流开源了
javascript·人工智能·开源·音视频·能源
羊羊小栈7 分钟前
基于「YOLO目标检测 + 多模态AI分析」的遥感影像目标检测分析系统(vue+flask+数据集+模型训练)
人工智能·深度学习·yolo·目标检测·毕业设计·大作业
l12345sy12 分钟前
Day24_【深度学习—广播机制】
人工智能·pytorch·深度学习·广播机制
IT古董14 分钟前
【第五章:计算机视觉-项目实战之图像分类实战】1.经典卷积神经网络模型Backbone与图像-(4)经典卷积神经网络ResNet的架构讲解
人工智能·计算机视觉·cnn
向往鹰的翱翔29 分钟前
BKY莱德因:5大黑科技逆转时光
大数据·人工智能·科技·生活·健康医疗
L.fountain32 分钟前
机器学习shap分析案例
人工智能·机器学习
weixin_4296302634 分钟前
机器学习-第一章
人工智能·机器学习
Cedric111334 分钟前
机器学习中的距离总结
人工智能·机器学习
大模型真好玩40 分钟前
深入浅出LangGraph AI Agent智能体开发教程(五)—LangGraph 数据分析助手智能体项目实战
人工智能·python·mcp