NLP 笔记:LDA(训练篇)

1 前言:吉布斯采样

吉布斯采样的基本思想是,通过迭代的方式,逐个维度地更新所有变量的状态

1.1 举例 收拾东西

  • 假设我们现在有一个很乱的屋子,我们不知道东西应该放在哪里(绝对位置),但知道哪个和哪个应该比较近(相对位置)

我们每次选取一个物品,假设其他的位置都是正确的,那么这个应该放在哪个位置

比如:选取一个衣架,把他放到另一个衣架边上

衣服放到裤子边上

一步一步来,直到东西已经正确放置

2 LDA 的两个原则

一个文章中单词的主题越集中越好

同一个单词的主题越集中越好

那the这种词怎么办?这种不重要的词舍弃掉

3 LDA 目标

有了LDA的两个基本原则后,LDA的目标可以变为(颜色代表topic):

4 LDA 更新过程

首先随机给每个单词染色

对于第一个单词ball,假设其他单词颜色是正确的

首先看同一个文件里面,其他单词的颜色

然后看看同一个单词,在所有文件里面出现的颜色

他们的乘积就是对应的概率权重

但是,我们不希望出现绝对的零,我们对所有的权重加一个很小的值:

然后以乘积结果作为权重,采样,采到哪个,就染成什么颜色

以此类推,一个一个重新染色所有的单词

那怎么知道应该染成什么颜色呢?这个是人为做的

参考内容:

Training Latent Dirichlet Allocation: Gibbs Sampling (Part 2 of 2) (youtube.com)

相关推荐
苍何13 分钟前
腾讯重磅开源!混元图像 3.0 图生图真香!
人工智能
千里马也想飞16 分钟前
人工智能在医疗领域的应用与研究论文写作实操:AI辅助快速完成框架+正文创作
人工智能
Rorsion21 分钟前
PyTorch实现二分类(单特征输出+单层神经网络)
人工智能·pytorch·分类
勾股导航29 分钟前
K-means
人工智能·机器学习·kmeans
liliangcsdn29 分钟前
Diff2Flow中扩散和流匹配的对齐探索
人工智能
SmartBrain34 分钟前
战略洞察:以AI为代表的第四次工业革命
人工智能·语言模型·aigc
一个处女座的程序猿44 分钟前
AI之Agent之VibeCoding:《Vibe Coding Kills Open Source》翻译与解读
人工智能·开源·vibecoding·氛围编程
Jay Kay1 小时前
GVPO:Group Variance Policy Optimization
人工智能·算法·机器学习
风指引着方向1 小时前
归约操作优化:ops-math 的 Sum/Mean/Max 实现
人工智能·wpf
机器之心1 小时前
英伟达世界模型再进化,一个模型驱动所有机器人!机器人的GPT时刻真正到来
人工智能·openai