使用Python和Scikit-learn库进行机器学习模型训练的项目------手写数字识别。
项目分析:
- 数据准备:使用公开数据集(如MNIST)作为训练和测试数据。
- 数据预处理:对图像数据进行归一化、展平等操作,以便输入到机器学习模型中。
- 模型选择:选择一个适合的机器学习模型,如支持向量机(SVM)、随机森林或神经网络(如多层感知机MLP)。
- 模型训练:使用训练数据对模型进行训练。
- 模型评估:使用测试数据对训练好的模型进行评估,计算准确率等指标。
首先,确保您已经安装了scikit-learn和numpy库。如果没有安装,可以通过pip进行安装:
pip install scikit-learn numpy
编写代码:
import numpy as np
from sklearn import datasets, svm, metrics
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.neural_network import MLPClassifier
1. 数据准备
加载MNIST数据集
digits = datasets.load_digits()
2. 数据预处理
将图像数据展平为一维数组
n_samples = len(digits.images)
data = digits.images.reshape((n_samples, -1))
划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(data, digits.target, test_size=0.5, shuffle=False)
数据标准化
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)
3. 模型选择
使用多层感知机(MLP)作为分类器
mlp = MLPClassifier(hidden_layer_sizes=(50,), max_iter=10, alpha=1e-4,
solver='sgd', verbose=10, random_state=1,
learning_rate_init=.1)
4. 模型训练
mlp.fit(X_train, y_train)
5. 模型评估
预测测试集结果
predictions = mlp.predict(X_test)
计算准确率
print("Classification report for classifier %s:\n%s\n"
% (mlp, metrics.classification_report(y_test, predictions)))
print("Confusion matrix:\n%s" % metrics.confusion_matrix(y_test, predictions))