python项目练习——4.手写数字识别

使用Python和Scikit-learn库进行机器学习模型训练的项目------手写数字识别。

项目分析:

  1. 数据准备:使用公开数据集(如MNIST)作为训练和测试数据。
  2. 数据预处理:对图像数据进行归一化、展平等操作,以便输入到机器学习模型中。
  3. 模型选择:选择一个适合的机器学习模型,如支持向量机(SVM)、随机森林或神经网络(如多层感知机MLP)。
  4. 模型训练:使用训练数据对模型进行训练。
  5. 模型评估:使用测试数据对训练好的模型进行评估,计算准确率等指标。

首先,确保您已经安装了scikit-learn和numpy库。如果没有安装,可以通过pip进行安装:

pip install scikit-learn numpy

编写代码:

import numpy as np

from sklearn import datasets, svm, metrics

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import StandardScaler

from sklearn.neural_network import MLPClassifier

1. 数据准备

加载MNIST数据集

digits = datasets.load_digits()

2. 数据预处理

将图像数据展平为一维数组

n_samples = len(digits.images)

data = digits.images.reshape((n_samples, -1))

划分训练集和测试集

X_train, X_test, y_train, y_test = train_test_split(data, digits.target, test_size=0.5, shuffle=False)

数据标准化

scaler = StandardScaler()

X_train = scaler.fit_transform(X_train)

X_test = scaler.transform(X_test)

3. 模型选择

使用多层感知机(MLP)作为分类器

mlp = MLPClassifier(hidden_layer_sizes=(50,), max_iter=10, alpha=1e-4,

solver='sgd', verbose=10, random_state=1,

learning_rate_init=.1)

4. 模型训练

mlp.fit(X_train, y_train)

5. 模型评估

预测测试集结果

predictions = mlp.predict(X_test)

计算准确率

print("Classification report for classifier %s:\n%s\n"

% (mlp, metrics.classification_report(y_test, predictions)))

print("Confusion matrix:\n%s" % metrics.confusion_matrix(y_test, predictions))

相关推荐
今天我又学废了8 分钟前
Scala学习记录,List
学习
杨荧13 分钟前
【JAVA毕业设计】基于Vue和SpringBoot的服装商城系统学科竞赛管理系统
java·开发语言·vue.js·spring boot·spring cloud·java-ee·kafka
白子寰20 分钟前
【C++打怪之路Lv14】- “多态“篇
开发语言·c++
yannan2019031320 分钟前
【算法】(Python)动态规划
python·算法·动态规划
蒙娜丽宁30 分钟前
《Python OpenCV从菜鸟到高手》——零基础进阶,开启图像处理与计算机视觉的大门!
python·opencv·计算机视觉
光芒再现dev31 分钟前
已解决,部署GPTSoVITS报错‘AsyncRequest‘ object has no attribute ‘_json_response_data‘
运维·python·gpt·语言模型·自然语言处理
王俊山IT32 分钟前
C++学习笔记----10、模块、头文件及各种主题(一)---- 模块(5)
开发语言·c++·笔记·学习
为将者,自当识天晓地。34 分钟前
c++多线程
java·开发语言
小政爱学习!36 分钟前
封装axios、环境变量、api解耦、解决跨域、全局组件注入
开发语言·前端·javascript
好喜欢吃红柚子1 小时前
万字长文解读空间、通道注意力机制机制和超详细代码逐行分析(SE,CBAM,SGE,CA,ECA,TA)
人工智能·pytorch·python·计算机视觉·cnn