python项目练习——4.手写数字识别

使用Python和Scikit-learn库进行机器学习模型训练的项目------手写数字识别。

项目分析:

  1. 数据准备:使用公开数据集(如MNIST)作为训练和测试数据。
  2. 数据预处理:对图像数据进行归一化、展平等操作,以便输入到机器学习模型中。
  3. 模型选择:选择一个适合的机器学习模型,如支持向量机(SVM)、随机森林或神经网络(如多层感知机MLP)。
  4. 模型训练:使用训练数据对模型进行训练。
  5. 模型评估:使用测试数据对训练好的模型进行评估,计算准确率等指标。

首先,确保您已经安装了scikit-learn和numpy库。如果没有安装,可以通过pip进行安装:

pip install scikit-learn numpy

编写代码:

import numpy as np

from sklearn import datasets, svm, metrics

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import StandardScaler

from sklearn.neural_network import MLPClassifier

1. 数据准备

加载MNIST数据集

digits = datasets.load_digits()

2. 数据预处理

将图像数据展平为一维数组

n_samples = len(digits.images)

data = digits.images.reshape((n_samples, -1))

划分训练集和测试集

X_train, X_test, y_train, y_test = train_test_split(data, digits.target, test_size=0.5, shuffle=False)

数据标准化

scaler = StandardScaler()

X_train = scaler.fit_transform(X_train)

X_test = scaler.transform(X_test)

3. 模型选择

使用多层感知机(MLP)作为分类器

mlp = MLPClassifier(hidden_layer_sizes=(50,), max_iter=10, alpha=1e-4,

solver='sgd', verbose=10, random_state=1,

learning_rate_init=.1)

4. 模型训练

mlp.fit(X_train, y_train)

5. 模型评估

预测测试集结果

predictions = mlp.predict(X_test)

计算准确率

print("Classification report for classifier %s:\n%s\n"

% (mlp, metrics.classification_report(y_test, predictions)))

print("Confusion matrix:\n%s" % metrics.confusion_matrix(y_test, predictions))

相关推荐
葡萄成熟时 !21 分钟前
黑马学生管理系统
java·开发语言
雍凉明月夜23 分钟前
视觉opencv学习笔记Ⅲ
笔记·opencv·学习
秋邱23 分钟前
高等教育 AI 智能体的 “导学诊践” 闭环
开发语言·网络·数据库·人工智能·python·docker
组合缺一30 分钟前
Solon AI 开发学习6 - chat - 两种 http 流式输入输出
python·学习·http
沐浴露z37 分钟前
为什么使用SpringAI时通常用Builder来创建对象?详解 【Builder模式】和【直接 new】的区别
java·python·建造者模式
j***630837 分钟前
MacOS升级ruby版本
开发语言·macos·ruby
陈天伟教授41 分钟前
机器学习方法(4)强化学习(试错学习)
人工智能·学习·机器学习
青瓷程序设计1 小时前
【宠物识别系统】Python+TensorFlow+Vue3+Django+人工智能+深度学习+卷积神经网络算法
人工智能·python·深度学习
g***86691 小时前
PHP进阶-在Ubuntu上搭建LAMP环境教程
开发语言·ubuntu·php
合作小小程序员小小店1 小时前
桌面开发,拼车管理系统开发,基于C#,winform,sql server数据库
开发语言·数据库·sql·microsoft·c#