算法---动态规划练习-4(不同路径 2)

不同路径 2

  • [1. 题目解析](#1. 题目解析)
  • [2. 讲解算法原理](#2. 讲解算法原理)
  • [3. 编写代码](#3. 编写代码)

1. 题目解析

题目地址点这里

2. 讲解算法原理


  1. 首先,通过obstacleGrid的大小确定网格的行数m和列数n。

  2. 创建一个大小为(m+1) × (n+1)的二维动态规划数组dp,其中dp[i][j]表示从起点到达网格位置(i-1, j-1)的路径数量。

  3. 初始化动态规划数组的第一行和第一列:

  • 将dp[0][1]初始化为1,表示从起点位置开始的路径数量为1。
  • 对于第一行和第一列的其他位置,由于只能向右或向下移动,如果遇到障碍物(obstacleGrid[i-1][j-1]为1),则路径数量为0;否则,路径数量与前一个位置的路径数量相同。
  1. 从网格的第二行第二列开始,依次填表。对于每个位置(i, j),计算dp[i][j]的值:
  • 如果当前网格位置不是障碍物(obstacleGrid[i-1][j-1]不等于1),说明可以从上方格子到达当前位置,路径数量为dp[i-1][j];
  • 如果当前网格位置不是障碍物(obstacleGrid[i-1][j-1]不等于1),说明可以从左方格子到达当前位置,路径数量为dp[i][j-1]。
  • 将上述两种路径数量相加,得到从起点到达当前位置的路径数量,并将其赋给dp[i][j]。
  1. 最后,返回动态规划数组中右下角位置(m, n)的值,即从起点到达终点的路径数量。

3. 编写代码

cpp 复制代码
class Solution {
public:
    int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
        int n=obstacleGrid[0].size();
        int m=obstacleGrid.size();
        vector<vector<int>> dp(m+1,vector<int>(n+1));
        dp[0][1]=1;
        for(int i=1;i<=m;i++)
        {
            for(int j=1;j<=n;j++)
            {
                if(obstacleGrid[i-1][j-1]!=1) 
                dp[i][j]=dp[i][j-1]+dp[i-1][j];
            }
        }
            return dp[m][n];
    }
};
相关推荐
残影飞雪38 分钟前
Jetson版本下Pytorch和torchvision
c++
松涛和鸣2 小时前
14、C 语言进阶:函数指针、typedef、二级指针、const 指针
c语言·开发语言·算法·排序算法·学习方法
yagamiraito_4 小时前
757. 设置交集大小至少为2 (leetcode每日一题)
算法·leetcode·go
星释4 小时前
Rust 练习册 57:阿特巴什密码与字符映射技术
服务器·算法·rust
无敌最俊朗@4 小时前
力扣hot100-141.环形链表
算法·leetcode·链表
实心儿儿6 小时前
C++ —— 模板进阶
开发语言·c++
WWZZ20256 小时前
快速上手大模型:深度学习10(卷积神经网络2、模型训练实践、批量归一化)
人工智能·深度学习·神经网络·算法·机器人·大模型·具身智能
go_bai7 小时前
Linux-线程2
linux·c++·经验分享·笔记·学习方法
sali-tec7 小时前
C# 基于halcon的视觉工作流-章62 点云采样
开发语言·图像处理·人工智能·算法·计算机视觉
fashion 道格7 小时前
用 C 语言玩转归并排序:递归实现的深度解析
数据结构·算法·排序算法