算法---动态规划练习-4(不同路径 2)

不同路径 2

  • [1. 题目解析](#1. 题目解析)
  • [2. 讲解算法原理](#2. 讲解算法原理)
  • [3. 编写代码](#3. 编写代码)

1. 题目解析

题目地址点这里

2. 讲解算法原理


  1. 首先,通过obstacleGrid的大小确定网格的行数m和列数n。

  2. 创建一个大小为(m+1) × (n+1)的二维动态规划数组dp,其中dp[i][j]表示从起点到达网格位置(i-1, j-1)的路径数量。

  3. 初始化动态规划数组的第一行和第一列:

  • 将dp[0][1]初始化为1,表示从起点位置开始的路径数量为1。
  • 对于第一行和第一列的其他位置,由于只能向右或向下移动,如果遇到障碍物(obstacleGrid[i-1][j-1]为1),则路径数量为0;否则,路径数量与前一个位置的路径数量相同。
  1. 从网格的第二行第二列开始,依次填表。对于每个位置(i, j),计算dp[i][j]的值:
  • 如果当前网格位置不是障碍物(obstacleGrid[i-1][j-1]不等于1),说明可以从上方格子到达当前位置,路径数量为dp[i-1][j];
  • 如果当前网格位置不是障碍物(obstacleGrid[i-1][j-1]不等于1),说明可以从左方格子到达当前位置,路径数量为dp[i][j-1]。
  • 将上述两种路径数量相加,得到从起点到达当前位置的路径数量,并将其赋给dp[i][j]。
  1. 最后,返回动态规划数组中右下角位置(m, n)的值,即从起点到达终点的路径数量。

3. 编写代码

cpp 复制代码
class Solution {
public:
    int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
        int n=obstacleGrid[0].size();
        int m=obstacleGrid.size();
        vector<vector<int>> dp(m+1,vector<int>(n+1));
        dp[0][1]=1;
        for(int i=1;i<=m;i++)
        {
            for(int j=1;j<=n;j++)
            {
                if(obstacleGrid[i-1][j-1]!=1) 
                dp[i][j]=dp[i][j-1]+dp[i-1][j];
            }
        }
            return dp[m][n];
    }
};
相关推荐
长安er2 分钟前
LeetCode876/141/142/143 快慢指针应用:链表中间 / 环形 / 重排问题
数据结构·算法·leetcode·链表·双指针·环形链表
Aaron15888 分钟前
电子战侦察干扰技术在反无人机领域的技术浅析
算法·fpga开发·硬件架构·硬件工程·无人机·基带工程
zhglhy27 分钟前
Jaccard相似度算法原理及Java实现
java·开发语言·算法
仰泳的熊猫43 分钟前
1140 Look-and-say Sequence
数据结构·c++·算法·pat考试
Hard but lovely44 分钟前
C/C++ ---条件编译#ifdef
c语言·开发语言·c++
闻缺陷则喜何志丹1 小时前
【计算几何】P12144 [蓝桥杯 2025 省 A] 地雷阵|普及+
c++·数学·蓝桥杯·计算几何
handuoduo12341 小时前
SITAN中avp必要性分析
人工智能·算法·机器学习
zl_vslam1 小时前
SLAM中的非线性优-3D图优化之相对位姿Between Factor右扰动(八)
人工智能·算法·计算机视觉·3d
电饭叔1 小时前
如何代码化,两点之间的距离
笔记·python·算法
TL滕1 小时前
从0开始学算法——第十三天(Rabin-Karp 算法练习)
笔记·学习·算法·哈希算法