算法---动态规划练习-4(不同路径 2)

不同路径 2

  • [1. 题目解析](#1. 题目解析)
  • [2. 讲解算法原理](#2. 讲解算法原理)
  • [3. 编写代码](#3. 编写代码)

1. 题目解析

题目地址点这里

2. 讲解算法原理


  1. 首先,通过obstacleGrid的大小确定网格的行数m和列数n。

  2. 创建一个大小为(m+1) × (n+1)的二维动态规划数组dp,其中dp[i][j]表示从起点到达网格位置(i-1, j-1)的路径数量。

  3. 初始化动态规划数组的第一行和第一列:

  • 将dp[0][1]初始化为1,表示从起点位置开始的路径数量为1。
  • 对于第一行和第一列的其他位置,由于只能向右或向下移动,如果遇到障碍物(obstacleGrid[i-1][j-1]为1),则路径数量为0;否则,路径数量与前一个位置的路径数量相同。
  1. 从网格的第二行第二列开始,依次填表。对于每个位置(i, j),计算dp[i][j]的值:
  • 如果当前网格位置不是障碍物(obstacleGrid[i-1][j-1]不等于1),说明可以从上方格子到达当前位置,路径数量为dp[i-1][j];
  • 如果当前网格位置不是障碍物(obstacleGrid[i-1][j-1]不等于1),说明可以从左方格子到达当前位置,路径数量为dp[i][j-1]。
  • 将上述两种路径数量相加,得到从起点到达当前位置的路径数量,并将其赋给dp[i][j]。
  1. 最后,返回动态规划数组中右下角位置(m, n)的值,即从起点到达终点的路径数量。

3. 编写代码

cpp 复制代码
class Solution {
public:
    int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
        int n=obstacleGrid[0].size();
        int m=obstacleGrid.size();
        vector<vector<int>> dp(m+1,vector<int>(n+1));
        dp[0][1]=1;
        for(int i=1;i<=m;i++)
        {
            for(int j=1;j<=n;j++)
            {
                if(obstacleGrid[i-1][j-1]!=1) 
                dp[i][j]=dp[i][j-1]+dp[i-1][j];
            }
        }
            return dp[m][n];
    }
};
相关推荐
夏鹏今天学习了吗4 小时前
【LeetCode热题100(82/100)】单词拆分
算法·leetcode·职场和发展
mit6.8244 小时前
mysql exe
算法
2501_901147835 小时前
动态规划在整除子集问题中的应用与高性能实现分析
算法·职场和发展·动态规划
中草药z5 小时前
【嵌入模型】概念、应用与两大 AI 开源社区(Hugging Face / 魔塔)
人工智能·算法·机器学习·数据集·向量·嵌入模型
知乎的哥廷根数学学派5 小时前
基于数据驱动的自适应正交小波基优化算法(Python)
开发语言·网络·人工智能·pytorch·python·深度学习·算法
ADI_OP6 小时前
ADAU1452的开发教程10:逻辑算法模块
算法·adi dsp中文资料·adi dsp·adi音频dsp·adi dsp开发教程·sigmadsp的开发详解
xingzhemengyou16 小时前
C语言 查找一个字符在字符串中第i次出现的位置
c语言·算法
Dream it possible!7 小时前
LeetCode 面试经典 150_二分查找_在排序数组中查找元素的第一个和最后一个位置(115_34_C++_中等)
c++·leetcode·面试
月光下的麦克7 小时前
如何查案动态库版本
linux·运维·c++
小六子成长记8 小时前
【C++】:搜索二叉树的模拟实现
数据结构·c++·算法