算法---动态规划练习-4(不同路径 2)

不同路径 2

  • [1. 题目解析](#1. 题目解析)
  • [2. 讲解算法原理](#2. 讲解算法原理)
  • [3. 编写代码](#3. 编写代码)

1. 题目解析

题目地址点这里

2. 讲解算法原理


  1. 首先,通过obstacleGrid的大小确定网格的行数m和列数n。

  2. 创建一个大小为(m+1) × (n+1)的二维动态规划数组dp,其中dp[i][j]表示从起点到达网格位置(i-1, j-1)的路径数量。

  3. 初始化动态规划数组的第一行和第一列:

  • 将dp[0][1]初始化为1,表示从起点位置开始的路径数量为1。
  • 对于第一行和第一列的其他位置,由于只能向右或向下移动,如果遇到障碍物(obstacleGrid[i-1][j-1]为1),则路径数量为0;否则,路径数量与前一个位置的路径数量相同。
  1. 从网格的第二行第二列开始,依次填表。对于每个位置(i, j),计算dp[i][j]的值:
  • 如果当前网格位置不是障碍物(obstacleGrid[i-1][j-1]不等于1),说明可以从上方格子到达当前位置,路径数量为dp[i-1][j];
  • 如果当前网格位置不是障碍物(obstacleGrid[i-1][j-1]不等于1),说明可以从左方格子到达当前位置,路径数量为dp[i][j-1]。
  • 将上述两种路径数量相加,得到从起点到达当前位置的路径数量,并将其赋给dp[i][j]。
  1. 最后,返回动态规划数组中右下角位置(m, n)的值,即从起点到达终点的路径数量。

3. 编写代码

cpp 复制代码
class Solution {
public:
    int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
        int n=obstacleGrid[0].size();
        int m=obstacleGrid.size();
        vector<vector<int>> dp(m+1,vector<int>(n+1));
        dp[0][1]=1;
        for(int i=1;i<=m;i++)
        {
            for(int j=1;j<=n;j++)
            {
                if(obstacleGrid[i-1][j-1]!=1) 
                dp[i][j]=dp[i][j-1]+dp[i-1][j];
            }
        }
            return dp[m][n];
    }
};
相关推荐
快手技术17 分钟前
快手提出端到端生成式搜索框架 OneSearch,让搜索“一步到位”!
算法
感哥1 小时前
C++ 多重继承
c++
博笙困了1 小时前
C++提高编程 4.0
c++
扑克中的黑桃A1 小时前
[C语言]第三章-数据类型&变量
c++
感哥2 小时前
C++ std::string
c++
感哥18 小时前
C++ 面向对象
c++
CoovallyAIHub20 小时前
中科大DSAI Lab团队多篇论文入选ICCV 2025,推动三维视觉与泛化感知技术突破
深度学习·算法·计算机视觉
沐怡旸20 小时前
【底层机制】std::shared_ptr解决的痛点?是什么?如何实现?如何正确用?
c++·面试
NAGNIP21 小时前
Serverless 架构下的大模型框架落地实践
算法·架构
moonlifesudo21 小时前
半开区间和开区间的两个二分模版
算法