亚马逊云科技生成式AI

知识召回

RAG(Retrieval-Augmented Generation)检索增强生成。是一种结合了检索和生成的自然语言处理模型。它结合了检索式方法和生成式方法的优势,旨在解决生成式模型的困难和不确定性问题,同时利用检索式方法来提供更加准确和可控的生成结果。

RAG模型通常由两个主要组件组成:

  1. 生成器(Generator):生成器是一个基于生成式模型的组件,通常是一个预训练的语言生成模型,比如GPT。它负责生成文本序列,可以根据输入的上下文和特定的条件生成文本。

  2. 检索器(Retriever) :检索器是一个用于从大规模知识库中检索相关信息的组件,通常使用一种检索式方法,比如使用向量检索或者基于检索的问答系统。检索器根据输入的查询,从知识库中检索出相关的文本片段或者信息。主流的是从向量知识库里检索

RAG模型的工作流程通常如下:

  1. 接收输入查询或者上下文。
  2. 使用检索器从知识库中检索相关信息。
  3. 将检索到的信息与输入的上下文结合,输入到生成器中。
  4. 生成器根据综合的信息生成文本序列。

RAG模型的优势在于,通过结合生成式模型和检索式方法,它可以在生成文本时借助外部知识库提供更加准确和相关的信息,从而生成更加合理和丰富的文本内容。这种结合可以有效地提高生成式模型的性能和可控性,使其在各种自然语言处理任务中取得更好的效果。

向量知识库里检索

将文本信息转换为向量表示,并使用这些向量来表示文本之间的语义相似性或相关性

1、嵌入模型保存

  • 对于预训练的嵌入模型(如Word2Vec、GloVe、FastText等),可以将它们的参数保存下来,以便在需要时使用。这些模型会学习将每个单词映射到一个高维空间中的向量表示,这些向量可以用于表示单词之间的语义相似性。
  1. 选择合适的向量表示方法

    • 根据任务需求和数据特点选择合适的向量表示方法。常见的方法包括词嵌入模型(如Word2Vec、GloVe、FastText)、文档向量化模型(如Doc2Vec)或深度学习模型(如BERT、Transformer)等。
  2. 训练或加载预训练模型

    • 如果选择使用预训练的向量表示模型,需要加载模型并进行训练。对于一些模型(如Word2Vec、GloVe等),可以直接加载已经训练好的模型参数。
  3. 将文本转换为向量表示

    • 对于每个文本数据,利用选择的向量表示方法将其转换为对应的向量表示。这可以是单词级别的向量表示,也可以是文档级别的向量表示。
  4. 存储向量表示数据

    • 将每个文本及其对应的向量表示存储到数据库或文件中。可以使用数据库管理系统(如MySQL、MongoDB等)来创建表格,并将文本及其向量表示存储在对应的字段中。如果选择存储到文件中,可以选择常见的数据格式如CSV、JSON等。
  5. 建立索引(可选)

    • 如果数据量较大,可以考虑建立索引以加快检索速度。数据库管理系统通常提供了建立索引的功能,可以根据需要选择适当的字段建立索引。
相关推荐
AI精钢2 小时前
H20芯片与中国的科技自立:一场隐形的博弈
人工智能·科技·stm32·单片机·物联网
试剂界的爱马仕10 小时前
胶质母细胞瘤对化疗的敏感性由磷脂酰肌醇3-激酶β选择性调控
人工智能·科技·算法·机器学习·ai写作
独行soc1 天前
2025年渗透测试面试题总结-18(题目+回答)
android·python·科技·面试·职场和发展·渗透测试
BJ_Bonree1 天前
数智先锋 | 告别运维黑盒!豪鹏科技×Bonree ONE构建全栈智能可观测体系
运维·科技
leagsoft_10031 天前
精准阻断内网渗透:联软科技终端接入方案如何“锁死”横向移动?
科技
新启航光学频率梳1 天前
【新启航】起落架大型结构件深孔检测探究 - 激光频率梳 3D 轮廓检测
科技·3d·制造
Fabarta技术团队1 天前
前瞻性技术驱动,枫清科技助力制造企业借助大模型完成生产力转化
人工智能·科技·制造
zskj_zhyl2 天前
科技赋能千年养生丨七彩喜艾灸机器人,让传统智慧触手可及
人工智能·科技·机器人
做一个码农都是奢望2 天前
华测科技的3D GPR数据分析
科技
计算机sci论文精选2 天前
CVPR2025敲门砖丨机器人结合多模态+时空Transformer直冲高分,让你的论文不再灌水
人工智能·科技·深度学习·机器人·transformer·cvpr