亚马逊云科技生成式AI

知识召回

RAG(Retrieval-Augmented Generation)检索增强生成。是一种结合了检索和生成的自然语言处理模型。它结合了检索式方法和生成式方法的优势,旨在解决生成式模型的困难和不确定性问题,同时利用检索式方法来提供更加准确和可控的生成结果。

RAG模型通常由两个主要组件组成:

  1. 生成器(Generator):生成器是一个基于生成式模型的组件,通常是一个预训练的语言生成模型,比如GPT。它负责生成文本序列,可以根据输入的上下文和特定的条件生成文本。

  2. 检索器(Retriever) :检索器是一个用于从大规模知识库中检索相关信息的组件,通常使用一种检索式方法,比如使用向量检索或者基于检索的问答系统。检索器根据输入的查询,从知识库中检索出相关的文本片段或者信息。主流的是从向量知识库里检索

RAG模型的工作流程通常如下:

  1. 接收输入查询或者上下文。
  2. 使用检索器从知识库中检索相关信息。
  3. 将检索到的信息与输入的上下文结合,输入到生成器中。
  4. 生成器根据综合的信息生成文本序列。

RAG模型的优势在于,通过结合生成式模型和检索式方法,它可以在生成文本时借助外部知识库提供更加准确和相关的信息,从而生成更加合理和丰富的文本内容。这种结合可以有效地提高生成式模型的性能和可控性,使其在各种自然语言处理任务中取得更好的效果。

向量知识库里检索

将文本信息转换为向量表示,并使用这些向量来表示文本之间的语义相似性或相关性

1、嵌入模型保存

  • 对于预训练的嵌入模型(如Word2Vec、GloVe、FastText等),可以将它们的参数保存下来,以便在需要时使用。这些模型会学习将每个单词映射到一个高维空间中的向量表示,这些向量可以用于表示单词之间的语义相似性。
  1. 选择合适的向量表示方法

    • 根据任务需求和数据特点选择合适的向量表示方法。常见的方法包括词嵌入模型(如Word2Vec、GloVe、FastText)、文档向量化模型(如Doc2Vec)或深度学习模型(如BERT、Transformer)等。
  2. 训练或加载预训练模型

    • 如果选择使用预训练的向量表示模型,需要加载模型并进行训练。对于一些模型(如Word2Vec、GloVe等),可以直接加载已经训练好的模型参数。
  3. 将文本转换为向量表示

    • 对于每个文本数据,利用选择的向量表示方法将其转换为对应的向量表示。这可以是单词级别的向量表示,也可以是文档级别的向量表示。
  4. 存储向量表示数据

    • 将每个文本及其对应的向量表示存储到数据库或文件中。可以使用数据库管理系统(如MySQL、MongoDB等)来创建表格,并将文本及其向量表示存储在对应的字段中。如果选择存储到文件中,可以选择常见的数据格式如CSV、JSON等。
  5. 建立索引(可选)

    • 如果数据量较大,可以考虑建立索引以加快检索速度。数据库管理系统通常提供了建立索引的功能,可以根据需要选择适当的字段建立索引。
相关推荐
wanhengidc1 小时前
云手机 开发测试中的便捷工具
运维·服务器·科技·智能手机·云计算
CNRio1 小时前
空间智能:中国数字基建的新引擎与产业变革的深层逻辑
人工智能·科技
星星泡饭2921 小时前
菲尼克斯屏蔽夹与机柜附件的EMC与安装指南
科技·硬件工程·制造
古城小栈2 小时前
教育科技:AI+Java 智能题库系统开发实践
java·人工智能·科技
世岩清上3 小时前
量子科技:重塑未来的颠覆性力量
科技·量子计算
余生H3 小时前
前端科技新闻(WTN-3)React v19 引发 Cloudflare 异常事件复盘 - 一次序列化升级,如何影响全球边缘网络?
前端·科技·react.js
测试人社区-小明4 小时前
测试领域的“云原生”进化:Serverless Testing
人工智能·科技·云原生·面试·金融·serverless·github
ModelWhale4 小时前
和鲸科技创始人&CEO 范向伟受邀赴港亮相 AI 赋能・科技自立 —— 中小企业创新与机遇高峰论坛并做主题演讲
人工智能·科技
Kingfar_14 小时前
智能驾驶研究:飞机座舱人机交互对飞行员情景意识的影响
科技·人机交互·可用性测试·ux·用户体验
Deepoch4 小时前
无人机产业变革前夜:当飞行器开始“思考”
人工智能·科技·无人机·开发板·具身模型·deepoc·无人机开发板