亚马逊云科技生成式AI

知识召回

RAG(Retrieval-Augmented Generation)检索增强生成。是一种结合了检索和生成的自然语言处理模型。它结合了检索式方法和生成式方法的优势,旨在解决生成式模型的困难和不确定性问题,同时利用检索式方法来提供更加准确和可控的生成结果。

RAG模型通常由两个主要组件组成:

  1. 生成器(Generator):生成器是一个基于生成式模型的组件,通常是一个预训练的语言生成模型,比如GPT。它负责生成文本序列,可以根据输入的上下文和特定的条件生成文本。

  2. 检索器(Retriever) :检索器是一个用于从大规模知识库中检索相关信息的组件,通常使用一种检索式方法,比如使用向量检索或者基于检索的问答系统。检索器根据输入的查询,从知识库中检索出相关的文本片段或者信息。主流的是从向量知识库里检索

RAG模型的工作流程通常如下:

  1. 接收输入查询或者上下文。
  2. 使用检索器从知识库中检索相关信息。
  3. 将检索到的信息与输入的上下文结合,输入到生成器中。
  4. 生成器根据综合的信息生成文本序列。

RAG模型的优势在于,通过结合生成式模型和检索式方法,它可以在生成文本时借助外部知识库提供更加准确和相关的信息,从而生成更加合理和丰富的文本内容。这种结合可以有效地提高生成式模型的性能和可控性,使其在各种自然语言处理任务中取得更好的效果。

向量知识库里检索

将文本信息转换为向量表示,并使用这些向量来表示文本之间的语义相似性或相关性

1、嵌入模型保存

  • 对于预训练的嵌入模型(如Word2Vec、GloVe、FastText等),可以将它们的参数保存下来,以便在需要时使用。这些模型会学习将每个单词映射到一个高维空间中的向量表示,这些向量可以用于表示单词之间的语义相似性。
  1. 选择合适的向量表示方法

    • 根据任务需求和数据特点选择合适的向量表示方法。常见的方法包括词嵌入模型(如Word2Vec、GloVe、FastText)、文档向量化模型(如Doc2Vec)或深度学习模型(如BERT、Transformer)等。
  2. 训练或加载预训练模型

    • 如果选择使用预训练的向量表示模型,需要加载模型并进行训练。对于一些模型(如Word2Vec、GloVe等),可以直接加载已经训练好的模型参数。
  3. 将文本转换为向量表示

    • 对于每个文本数据,利用选择的向量表示方法将其转换为对应的向量表示。这可以是单词级别的向量表示,也可以是文档级别的向量表示。
  4. 存储向量表示数据

    • 将每个文本及其对应的向量表示存储到数据库或文件中。可以使用数据库管理系统(如MySQL、MongoDB等)来创建表格,并将文本及其向量表示存储在对应的字段中。如果选择存储到文件中,可以选择常见的数据格式如CSV、JSON等。
  5. 建立索引(可选)

    • 如果数据量较大,可以考虑建立索引以加快检索速度。数据库管理系统通常提供了建立索引的功能,可以根据需要选择适当的字段建立索引。
相关推荐
唐天下文化41 分钟前
展厅迎宾机器人:豹小秘2如何打造科技第一印象
人工智能·科技·机器人
九河云1 小时前
物流仓储自动化升级:物道供应链 AGV 机器人实现分拣效率提升 60%
人工智能·科技·物联网·机器人·自动化
贝塔实验室3 小时前
LDPC码的概念
科技·学习·程序人生·算法·学习方法·程序员创富·改行学it
汇能感知12 小时前
光谱相机的未来趋势
经验分享·笔记·科技
市象12 小时前
留给石头科技的赛道不多了
科技
非凸科技12 小时前
非凸科技钻石赞助RustChinaConf 2025 & Rust Global China大会
科技
Deepoch14 小时前
Deepoc具身智能模型:为传统机器人注入“灵魂”,重塑建筑施工现场安全新范式
人工智能·科技·机器人·人机交互·具身智能
周杰伦_Jay16 小时前
【图文详解】强化学习核心框架、数学基础、分类、应用场景
人工智能·科技·算法·机器学习·计算机视觉·分类·数据挖掘
zskj_qcxjqr1 天前
中医智慧+AI科技,七彩喜机器人让健康养护“智”在必得
大数据·人工智能·科技·机器人
Deepoch1 天前
Deepoc具身智能模型:为传统电厂巡检机器人注入“灵魂”与“智慧”
人工智能·科技·机器人·具身智能