模型怎么处理不同尺寸的输入图像

1.有全连接层的的CNN模型

卷积能够处理不同尺寸的输入图像,但全连接层不行,因此在送入全连接层之前需将卷积层提取的特征转换为一个固定长度的特征向量。

那么如何转换?

1.1 GAP(Global Average Pooling)全局平均池化

直接代码举例:

python 复制代码
import torch
import torch.nn as nn
from torchvision import transforms

# 定义带有全连接层和全局平均池化层的 CNN 模型
class CNNWithGlobalAvgPool(nn.Module):
    def __init__(self):
        super(CNNWithGlobalAvgPool, self).__init__()
        self.conv1 = nn.Conv2d(3, 16, 3)
        self.conv2 = nn.Conv2d(16, 32, 3)
        self.fc = nn.Linear(32, 10)  # 假设输出类别数为 10
        self.global_avg_pool = nn.AdaptiveAvgPool2d(1)

    def forward(self, x):           #(1,3,224,224)
        x = self.conv1(x)           #(1,16,222,222)
        x = self.conv2(x)           #(1,32,220,220)
        x = self.global_avg_pool(x) #(1,32,1,1)
        x = x.view(x.size(0), -1)   #(1,32)
        x = self.fc(x)              #(1,10)
        return x

# 创建模型实例
model = CNNWithGlobalAvgPool()

image = torch.randn(1,3,224,224)

output = model(image)
print(output)

左边为普通卷积网络提取特征num_chanels*h*w后全部展开成一维向量num_chanels*h*w,再送入到全连接层,不同尺寸的图像得到不同的一维向量,输入到全连接层的in_feature数就不同,故需要统一尺寸。

右图为GAP,直接将每个通道的所有特征取平均得到num_chanels*1的向量,这样就与输入图像尺寸无关了。

1.2 SPP(Spatial Pyramid Pooling)空间金字塔池化。其中,全局平均池化是空间金字塔池化的一种特殊形式,只使用一个池化层。

上示例代码:

python 复制代码
import torch
import torch.nn as nn
import torch.nn.functional as F

class SpatialPyramidPooling(nn.Module):
    def __init__(self, levels=[1, 2, 4]):
        super(SpatialPyramidPooling, self).__init__()
        self.levels = levels

    def forward(self, x):
        N, C, H, W = x.size()
        output = []
        
        for level in self.levels:
            kh = H // level
            kw = W // level
            for i in range(level):
                for j in range(level):
                    h_start = i * kh
                    w_start = j * kw
                    h_end = min(h_start + kh, H)
                    w_end = min(w_start + kw, W)
                    
                    pool_feat = F.adaptive_max_pool2d(x[:, :, h_start:h_end, w_start:w_end], (1, 1))
                    output.append(pool_feat.view(N, -1))

        output = torch.cat(output, dim=1)
        
        return output

# 使用示例
spp = SpatialPyramidPooling(levels=[1, 2, 4])
input_data = torch.randn(1, 3, 32, 32)  # 输入数据大小为(1, 3, 32, 32)
output = spp(input_data)
print(output.size())

SPP:将特征图划分成不同尺寸的子区域,如1x1、2x2、4x4等不同级别的子区域,对每个子区域进行池化操作,通常是最大池化或平均池化,将这些子区域内的特征映射转换为固定长度的向量,最后将这些向量连接在一起,形成一个具有固定维度的特征表示。

2.FCN全卷积模型

没有全连接层,故可以处理不同尺寸的输入图像

相关推荐
飞哥数智坊11 小时前
GPT-5-Codex 发布,Codex 正在取代 Claude
人工智能·ai编程
倔强青铜三12 小时前
苦练Python第46天:文件写入与上下文管理器
人工智能·python·面试
虫无涯12 小时前
Dify Agent + AntV 实战:从 0 到 1 打造数据可视化解决方案
人工智能
Dm_dotnet15 小时前
公益站Agent Router注册送200刀额度竟然是真的
人工智能
算家计算15 小时前
7B参数拿下30个世界第一!Hunyuan-MT-7B本地部署教程:腾讯混元开源业界首个翻译集成模型
人工智能·开源
机器之心15 小时前
LLM开源2.0大洗牌:60个出局,39个上桌,AI Coding疯魔,TensorFlow已死
人工智能·openai
Juchecar16 小时前
交叉熵:深度学习中最常用的损失函数
人工智能
林木森ai16 小时前
爆款AI动物运动会视频,用Coze(扣子)一键搞定全流程(附保姆级拆解)
人工智能·aigc
聚客AI17 小时前
🙋‍♀️Transformer训练与推理全流程:从输入处理到输出生成
人工智能·算法·llm
BeerBear18 小时前
【保姆级教程-从0开始开发MCP服务器】一、MCP学习压根没有你想象得那么难!.md
人工智能·mcp