Flink中流式的各种聚合

11.1 MiniBatch 聚合

针对无界聚合算子,说简单点就是把一组输入的数据放到缓存里,减少吞吐的开销 默认情况下,对于无界聚合算子来说,mini-batch 优化是被禁用的。开启这项优化,需要设置选项

复制代码
TableConfig configuration = tEnv.getConfig();
configuration.set("table.exec.mini-batch.enabled", "true"); //开启小批量优化
configuration.set("table.exec.mini-batch.allow-latency", "5 s"); //缓存5秒的输入记录 
configuration.set("table.exec.mini-batch.size", "5000"); // 每个聚合运算符任务可以缓冲的最大记录数

11.2 Local-Global 聚合

Local-Global 聚合是为解决数据倾斜问题提出的,通过将一组聚合分为两个阶段,首先在上游进行本地聚合,然后在下游进行全局聚合,类似于 MapReduce 中的 Combine + Reduce 模式。简单来说就是map端聚合之后reduce处理map端聚合的数据。

复制代码
Configuration configuration = tEnv.getConfig().getConfiguration(); 
configuration.setString("table.exec.mini-batch.enabled", "true"); //本地-全局聚合取决于是否启用了mini-batch 
configuration.setString("table.exec.mini-batch.allow-latency", "5 s"); 
configuration.setString("table.exec.mini-batch.size", "5000"); 
configuration.setString("table.optimizer.agg-phase-strategy", "TWO_PHASE"); //启用两阶段聚合,即local-global聚合

11.3 拆分 distinct 聚合

**使用场景:**Local-Global 优化可有效消除常规聚合的数据倾斜,例如 SUM、COUNT、MAX、MIN、AVG。但是在处理 distinct 聚合时,其性能并不令人满意。

如果 distinct key (即 user_id)的值分布稀疏,则 COUNT DISTINCT 不适合减少数据。即使启用了 local-global 优化也没有太大帮助。因为累加器仍然包含几乎所有原始记录,并且全局聚合将成为瓶颈(大多数繁重的累加器由一个任务处理,即同一天)。

这个优化的想法是将不同的聚合(例如 COUNT(DISTINCT col))分为两个级别。第一次聚合由 group key 和额外的 bucket key 进行 shuffle。bucket key 是使用 HASH_CODE(distinct_key) % BUCKET_NUM 计算的。BUCKET_NUM 默认为1024,可以通过 table.optimizer.distinct-agg.split.bucket-num 选项进行配置。第二次聚合是由原始 group key 进行 shuffle,并使用 SUM 聚合来自不同 buckets 的 COUNT DISTINCT 值。由于相同的 distinct key 将仅在同一 bucket 中计算,因此转换是等效的。bucket key 充当附加 group key 的角色,以分担 group key 中热点的负担。bucket key 使 job 具有可伸缩性来解决不同聚合中的数据倾斜/热点。

类比离线中处理数据倾斜时。将key打散成很多份之后再聚合。

如何开启:

复制代码
tEnv.getConfig() .set("table.optimizer.distinct-agg.split.enabled", "true"); // enable distinct agg split

11.4 在 distinct 聚合上使用 FILTER 修饰符

在某些情况下,用户可能需要从不同维度计算 UV(独立访客)的数量,例如来自 Android 的 UV、iPhone 的 UV、Web 的 UV 和总 UV。很多人会选择 CASE WHEN,例如:

复制代码
SELECT day, 
COUNT(DISTINCT user_id) AS total_uv, 
COUNT(DISTINCT CASE WHEN flag IN ('android', 'iphone') THEN user_id ELSE NULL END) AS app_uv, 
COUNT(DISTINCT CASE WHEN flag IN ('wap', 'other') THEN user_id ELSE NULL END) AS web_uv 
FROM T GROUP BY day

但是,在这种情况下,建议使用 FILTER 语法而不是 CASE WHEN。因为 FILTER 更符合 SQL 标准,并且能获得更多的性能提升。FILTER 是用于聚合函数的修饰符,用于限制聚合中使用的值。将上面的示例替换为 FILTER 修饰符,如下所示:

复制代码
SELECT day, 
COUNT(DISTINCT user_id) AS total_uv, 
COUNT(DISTINCT user_id) FILTER (WHERE flag IN ('android', 'iphone')) AS app_uv, 
COUNT(DISTINCT user_id) FILTER (WHERE flag IN ('wap', 'other')) AS web_uv 
FROM T GROUP BY day

Flink SQL 优化器可以识别相同的 distinct key 上的不同过滤器参数。例如,在上面的示例中,三个 COUNT DISTINCT 都在 user_id 一列上。Flink 可以只使用一个共享状态实例,而不是三个状态实例,以减少状态访问和状态大小。在某些工作负载下,可以获得显著的性能提升。

相关推荐
ray96312 分钟前
Python——函数参数传递方式
开发语言·python
BullSmall13 分钟前
Socket中断原因与处理全攻略
开发语言
十五年专注C++开发14 分钟前
浅谈Qt中的QSql模块整体设计
开发语言·数据库·c++·qt
梅羽落18 分钟前
python武器化开发_01
开发语言·python·php
Joe_Blue_0222 分钟前
Matlab 入门案例介绍——如何创建脚本
开发语言·matlab·matlab 入门案例
崇山峻岭之间30 分钟前
Matlab学习记录20
开发语言·学习·matlab
逍遥德33 分钟前
JPA 操作对象图 (Object Graph) 详解
开发语言·python
微爱帮监所写信寄信38 分钟前
微爱帮监狱寄信写信小程序信件内容实时保存技术方案
java·服务器·开发语言·前端·小程序
七夜zippoe41 分钟前
响应式编程基石 Project Reactor源码解读
java·spring·flux·响应式编程·mono·订阅机制
李少兄1 小时前
时间戳转换工具
开发语言·javascript·工具