吴恩达机器学习笔记 二十八 使用多个决策树 树集合 有放回抽样 随机森林算法

使用一个决策树对数据的小变化非常敏感 ,这时可以使用多个决策树,称树的集合(tree ensemble)。如下图,猫猫分类问题中,若改变一只猫的特征,得到的将是两种完全不同的决策树,这使算法没那么健壮。

使用一个树集合(tree ensemble),集合中每个树预测的结果可能不同,由每个树进行投票,最多的是 cat, 所以结果就是cat。

有放回抽样(sampling with replacement) ,这里 replacement 指的是抽一次之后把抽出来的放回去再继续抽。构建随机训练集,如下图,每次从十个样本里抽一个直到抽够十个,是有放回抽样,所以抽出来的可能有重复。

随机森林算法

假设有一个大小为 m 的训练集,做 B 次这样的操作:有放回抽样重建一个大小为 m 的训练集 (随机训练集),然后根据这个训练集训练出一棵决策树,总共得到 B 棵这样的决策树。B越大越好,但好到一定程度之后再增大,实际上没有变好多少,尤其是当 B 远大于100时。

通常在确定分割特征时,我们不是考虑所有的 n 个特征,而是挑选一个特征的子集 ,让算法只能从这 k 个特征中选择再来进行分裂。当 k 为几十几百的时候,通常k 取 n 的平方根

为什么随机森林比一棵决策树更健壮

因为随机森林算法中的有放回抽样就相当于已经对数据做了微小改动,并且多个树相当于对这种改变进行了平均。

最后是老师讲的一个笑话:

Where does a machine learning engineer go camping?

In a random forest.

相关推荐
All The Way North-2 分钟前
PyTorch 二分类损失函数详解:BCELoss vs BCEWithLogitsLoss 最佳实践指南
人工智能·pytorch·深度学习·机器学习·二分类损失函数
丝斯20113 分钟前
AI学习笔记整理(28)—— 计算机视觉之姿态估计与动作识别
人工智能·笔记·学习
Xudde.9 小时前
friendly2靶机渗透
笔记·学习·安全·web安全·php
摇滚侠10 小时前
零基础小白自学 Git_Github 教程,GitHub Action 基础概念,笔记22
笔记·git·github
linly121911 小时前
ERP学习笔记-频域分析之小波变换fieldtrip
笔记·学习
Pluchon12 小时前
硅基计划4.0 算法 FloodFill算法
java·算法·leetcode·决策树·逻辑回归·深度优先·图搜索算法
yzx99101312 小时前
卷积神经网络(CNN):深度学习的视觉革命者
人工智能·机器学习
眠晚晚12 小时前
漏洞发现笔记分享
笔记·web安全·网络安全
云半S一13 小时前
春招准备之Redis篇
数据库·经验分享·redis·笔记·缓存
Al leng13 小时前
机器学习中偏差和方差的通俗理解
人工智能·机器学习