吴恩达机器学习笔记 二十八 使用多个决策树 树集合 有放回抽样 随机森林算法

使用一个决策树对数据的小变化非常敏感 ,这时可以使用多个决策树,称树的集合(tree ensemble)。如下图,猫猫分类问题中,若改变一只猫的特征,得到的将是两种完全不同的决策树,这使算法没那么健壮。

使用一个树集合(tree ensemble),集合中每个树预测的结果可能不同,由每个树进行投票,最多的是 cat, 所以结果就是cat。

有放回抽样(sampling with replacement) ,这里 replacement 指的是抽一次之后把抽出来的放回去再继续抽。构建随机训练集,如下图,每次从十个样本里抽一个直到抽够十个,是有放回抽样,所以抽出来的可能有重复。

随机森林算法

假设有一个大小为 m 的训练集,做 B 次这样的操作:有放回抽样重建一个大小为 m 的训练集 (随机训练集),然后根据这个训练集训练出一棵决策树,总共得到 B 棵这样的决策树。B越大越好,但好到一定程度之后再增大,实际上没有变好多少,尤其是当 B 远大于100时。

通常在确定分割特征时,我们不是考虑所有的 n 个特征,而是挑选一个特征的子集 ,让算法只能从这 k 个特征中选择再来进行分裂。当 k 为几十几百的时候,通常k 取 n 的平方根

为什么随机森林比一棵决策树更健壮

因为随机森林算法中的有放回抽样就相当于已经对数据做了微小改动,并且多个树相当于对这种改变进行了平均。

最后是老师讲的一个笑话:

Where does a machine learning engineer go camping?

In a random forest.

相关推荐
阡之尘埃44 分钟前
Python数据分析案例61——信贷风控评分卡模型(A卡)(scorecardpy 全面解析)
人工智能·python·机器学习·数据分析·智能风控·信贷风控
aloha_7891 小时前
从零记录搭建一个干净的mybatis环境
java·笔记·spring·spring cloud·maven·mybatis·springboot
dsywws2 小时前
Linux学习笔记之vim入门
linux·笔记·学习
A-超5 小时前
vue3展示pag格式动态图
笔记
u0101526585 小时前
STM32F103C8T6学习笔记2--LED流水灯与蜂鸣器
笔记·stm32·学习
weixin_518285055 小时前
深度学习笔记10-多分类
人工智能·笔记·深度学习
Java Fans5 小时前
深入了解逻辑回归:机器学习中的经典算法
机器学习
丘狸尾5 小时前
ubuntu【桌面】 配置NAT模式固定IP
笔记
王俊山IT6 小时前
C++学习笔记----10、模块、头文件及各种主题(二)---- 预处理指令
开发语言·c++·笔记·学习
慕卿扬6 小时前
基于python的机器学习(二)—— 使用Scikit-learn库
笔记·python·学习·机器学习·scikit-learn