吴恩达机器学习笔记 二十八 使用多个决策树 树集合 有放回抽样 随机森林算法

使用一个决策树对数据的小变化非常敏感 ,这时可以使用多个决策树,称树的集合(tree ensemble)。如下图,猫猫分类问题中,若改变一只猫的特征,得到的将是两种完全不同的决策树,这使算法没那么健壮。

使用一个树集合(tree ensemble),集合中每个树预测的结果可能不同,由每个树进行投票,最多的是 cat, 所以结果就是cat。

有放回抽样(sampling with replacement) ,这里 replacement 指的是抽一次之后把抽出来的放回去再继续抽。构建随机训练集,如下图,每次从十个样本里抽一个直到抽够十个,是有放回抽样,所以抽出来的可能有重复。

随机森林算法

假设有一个大小为 m 的训练集,做 B 次这样的操作:有放回抽样重建一个大小为 m 的训练集 (随机训练集),然后根据这个训练集训练出一棵决策树,总共得到 B 棵这样的决策树。B越大越好,但好到一定程度之后再增大,实际上没有变好多少,尤其是当 B 远大于100时。

通常在确定分割特征时,我们不是考虑所有的 n 个特征,而是挑选一个特征的子集 ,让算法只能从这 k 个特征中选择再来进行分裂。当 k 为几十几百的时候,通常k 取 n 的平方根

为什么随机森林比一棵决策树更健壮

因为随机森林算法中的有放回抽样就相当于已经对数据做了微小改动,并且多个树相当于对这种改变进行了平均。

最后是老师讲的一个笑话:

Where does a machine learning engineer go camping?

In a random forest.

相关推荐
X54先生(人文科技)17 小时前
20260212_Meta-CreationPower_Development_Log(启蒙灯塔起源团队开发日志)
人工智能·机器学习·架构·团队开发·零知识证明
蒸蒸yyyyzwd17 小时前
分布式学习笔记 p5-13
笔记·分布式·学习
Yeh20205817 小时前
2月11日笔记
笔记
凉、介17 小时前
关于家用路由器的一些知识
网络·笔记·学习·智能路由器
郝学胜-神的一滴17 小时前
贝叶斯之美:从公式到朴素贝叶斯算法的实践之旅
人工智能·python·算法·机器学习·scikit-learn
ljt272496066117 小时前
Compose笔记(七十三)--滑动折叠AppBar
笔记·android jetpack
saoys17 小时前
Opencv 学习笔记:基于图像变换 + 分水岭的图像分割(背景去除入门)
笔记·opencv·学习
kkkkkkkkk_120117 小时前
【强化学习】08周博磊强化学习纲要学习笔记——第四课下
笔记·学习·强化学习
今天你TLE了吗17 小时前
JVM学习笔记:第二章——类加载子系统
java·开发语言·jvm·笔记
gorgeous(๑>؂<๑)17 小时前
【ICLR26-Oral Paper-Meta】先见之明:揭秘语言预训练中大型语言模型的视觉先验
人工智能·深度学习·算法·机器学习·语言模型