吴恩达机器学习笔记 二十八 使用多个决策树 树集合 有放回抽样 随机森林算法

使用一个决策树对数据的小变化非常敏感 ,这时可以使用多个决策树,称树的集合(tree ensemble)。如下图,猫猫分类问题中,若改变一只猫的特征,得到的将是两种完全不同的决策树,这使算法没那么健壮。

使用一个树集合(tree ensemble),集合中每个树预测的结果可能不同,由每个树进行投票,最多的是 cat, 所以结果就是cat。

有放回抽样(sampling with replacement) ,这里 replacement 指的是抽一次之后把抽出来的放回去再继续抽。构建随机训练集,如下图,每次从十个样本里抽一个直到抽够十个,是有放回抽样,所以抽出来的可能有重复。

随机森林算法

假设有一个大小为 m 的训练集,做 B 次这样的操作:有放回抽样重建一个大小为 m 的训练集 (随机训练集),然后根据这个训练集训练出一棵决策树,总共得到 B 棵这样的决策树。B越大越好,但好到一定程度之后再增大,实际上没有变好多少,尤其是当 B 远大于100时。

通常在确定分割特征时,我们不是考虑所有的 n 个特征,而是挑选一个特征的子集 ,让算法只能从这 k 个特征中选择再来进行分裂。当 k 为几十几百的时候,通常k 取 n 的平方根

为什么随机森林比一棵决策树更健壮

因为随机森林算法中的有放回抽样就相当于已经对数据做了微小改动,并且多个树相当于对这种改变进行了平均。

最后是老师讲的一个笑话:

Where does a machine learning engineer go camping?

In a random forest.

相关推荐
笑鸿的学习笔记13 分钟前
qt-C++语法笔记之Stretch与Spacer的关系分析
c++·笔记·qt
198921 分钟前
【零基础学AI】第30讲:生成对抗网络(GAN)实战 - 手写数字生成
人工智能·python·深度学习·神经网络·机器学习·生成对抗网络·近邻算法
神经星星31 分钟前
新加坡国立大学基于多维度EHR数据实现细粒度患者队列建模,住院时间预测准确率提升16.3%
人工智能·深度学习·机器学习
沐尘而生1 小时前
【AI智能体】智能音视频-硬件设备基于 WebSocket 实现语音交互
大数据·人工智能·websocket·机器学习·ai作画·音视频·娱乐
巴伦是只猫1 小时前
【机器学习笔记Ⅰ】3 代价函数
人工智能·笔记·机器学习
ZZZS05161 小时前
stack栈练习
c++·笔记·学习·算法·动态规划
路溪非溪2 小时前
机器学习:更多分类回归算法之决策树、SVM、KNN
机器学习·分类·回归
AI视觉网奇3 小时前
rag学习笔记
笔记·学习
神经星星4 小时前
专治AI审稿?论文暗藏好评提示词,谢赛宁呼吁关注AI时代科研伦理的演变
人工智能·深度学习·机器学习
teeeeeeemo5 小时前
http和https的区别
开发语言·网络·笔记·网络协议·http·https