吴恩达机器学习笔记 二十八 使用多个决策树 树集合 有放回抽样 随机森林算法

使用一个决策树对数据的小变化非常敏感 ,这时可以使用多个决策树,称树的集合(tree ensemble)。如下图,猫猫分类问题中,若改变一只猫的特征,得到的将是两种完全不同的决策树,这使算法没那么健壮。

使用一个树集合(tree ensemble),集合中每个树预测的结果可能不同,由每个树进行投票,最多的是 cat, 所以结果就是cat。

有放回抽样(sampling with replacement) ,这里 replacement 指的是抽一次之后把抽出来的放回去再继续抽。构建随机训练集,如下图,每次从十个样本里抽一个直到抽够十个,是有放回抽样,所以抽出来的可能有重复。

随机森林算法

假设有一个大小为 m 的训练集,做 B 次这样的操作:有放回抽样重建一个大小为 m 的训练集 (随机训练集),然后根据这个训练集训练出一棵决策树,总共得到 B 棵这样的决策树。B越大越好,但好到一定程度之后再增大,实际上没有变好多少,尤其是当 B 远大于100时。

通常在确定分割特征时,我们不是考虑所有的 n 个特征,而是挑选一个特征的子集 ,让算法只能从这 k 个特征中选择再来进行分裂。当 k 为几十几百的时候,通常k 取 n 的平方根

为什么随机森林比一棵决策树更健壮

因为随机森林算法中的有放回抽样就相当于已经对数据做了微小改动,并且多个树相当于对这种改变进行了平均。

最后是老师讲的一个笑话:

Where does a machine learning engineer go camping?

In a random forest.

相关推荐
小雨中_1 小时前
2.7 强化学习分类
人工智能·python·深度学习·机器学习·分类·数据挖掘
lczdyx1 小时前
【胶囊网络】01-2 胶囊网络发展历史与研究现状
人工智能·深度学习·机器学习·ai·大模型·反向传播
子辰ToT1 小时前
LearnOpenGL——高级光照(七)HDR
笔记·图形渲染·opengl
小雨中_2 小时前
2.4 贝尔曼方程与蒙特卡洛方法
人工智能·python·深度学习·机器学习·自然语言处理
heimeiyingwang3 小时前
企业非结构化数据的 AI 处理与价值挖掘
大数据·数据库·人工智能·机器学习·架构
山岚的运维笔记3 小时前
SQL Server笔记 -- 第63章:事务隔离级别
数据库·笔记·sql·microsoft·oracle·sqlserver
智者知已应修善业3 小时前
【排列顺序判断是否一次交换能得到升序】2025-1-28
c语言·c++·经验分享·笔记·算法
HuDie3403 小时前
AI产品经理课程笔记
人工智能·笔记·产品经理
lczdyx4 小时前
【胶囊网络 - 简明教程】02-1 胶囊网络 - 整体架构设计
人工智能·深度学习·机器学习·ai·大模型·反向传播·胶囊网络
lingliang4 小时前
Web3学习笔记:Day2-Solidity基础语法
笔记·学习·web3