吴恩达机器学习笔记 二十八 使用多个决策树 树集合 有放回抽样 随机森林算法

使用一个决策树对数据的小变化非常敏感 ,这时可以使用多个决策树,称树的集合(tree ensemble)。如下图,猫猫分类问题中,若改变一只猫的特征,得到的将是两种完全不同的决策树,这使算法没那么健壮。

使用一个树集合(tree ensemble),集合中每个树预测的结果可能不同,由每个树进行投票,最多的是 cat, 所以结果就是cat。

有放回抽样(sampling with replacement) ,这里 replacement 指的是抽一次之后把抽出来的放回去再继续抽。构建随机训练集,如下图,每次从十个样本里抽一个直到抽够十个,是有放回抽样,所以抽出来的可能有重复。

随机森林算法

假设有一个大小为 m 的训练集,做 B 次这样的操作:有放回抽样重建一个大小为 m 的训练集 (随机训练集),然后根据这个训练集训练出一棵决策树,总共得到 B 棵这样的决策树。B越大越好,但好到一定程度之后再增大,实际上没有变好多少,尤其是当 B 远大于100时。

通常在确定分割特征时,我们不是考虑所有的 n 个特征,而是挑选一个特征的子集 ,让算法只能从这 k 个特征中选择再来进行分裂。当 k 为几十几百的时候,通常k 取 n 的平方根

为什么随机森林比一棵决策树更健壮

因为随机森林算法中的有放回抽样就相当于已经对数据做了微小改动,并且多个树相当于对这种改变进行了平均。

最后是老师讲的一个笑话:

Where does a machine learning engineer go camping?

In a random forest.

相关推荐
某林2123 分钟前
集成式人机交互与底层驱动系统设计说明书
人工智能·stm32·嵌入式硬件·算法·机器学习·人机交互
S_Yu_Tong32 分钟前
C#图解教程笔记17-枚举器和迭代器
笔记
_落纸42 分钟前
《传感器与检测技术》第 4 章 光电式传感器原理与应用
笔记·自动化
Jay200211143 分钟前
【机器学习】28-29 推荐系统 & 推荐系统实现
人工智能·python·机器学习
_oP_i43 分钟前
常见、主流、可靠的机器学习与深度学习训练集网站
人工智能·深度学习·机器学习
zery44 分钟前
Label Studio 切换到PostgreSQL 数据库
目标检测·机器学习
光羽隹衡1 小时前
机器学习的介绍
人工智能·机器学习
john_hjy1 小时前
标量、向量、矩阵、张量
算法·机器学习·矩阵
free-elcmacom1 小时前
机器学习进阶<2>基于朴素贝叶斯的电影评论情感分析
人工智能·机器学习
兜兜转转了多少年1 小时前
《Prompt Engineering白皮书》笔记04 System / Context / Role 三种提示工程
人工智能·笔记·prompt