yolov8直接调用zed相机实现三维测距(python)

yolov8直接调用zed相机实现三维测距(python)

  • [1. 相关配置](#1. 相关配置)
  • [2. 版本一](#2. 版本一)
    • [2.1 相关代码](#2.1 相关代码)
    • [2.2 实验结果](#2.2 实验结果)
  • [3. 版本二](#3. 版本二)
    • [3.1 相关代码](#3.1 相关代码)
    • [3.2 实验结果](#3.2 实验结果)

相关链接

此项目直接调用zed相机实现三维测距,无需标定,相关内容如下:
1.yolov5直接调用zed相机实现三维测距(python)
2. yolov4直接调用zed相机实现三维测距
3. Windows+YOLOV8环境配置
4.具体实现效果已在哔哩哔哩发布,点击此链接跳转

本篇博文工程源码下载(麻烦github给个星星)
下载链接:https://github.com/up-up-up-up/zed-yolov8

附:Zed调用YOLOv7测距也已经实现,但是3060笔记本6G显存带不动,在大现存服务器上可以运行,可能是由于YOLOv7网络结构导致的,由于不具备普适性,就不再写相关文章了,有需要的可以仿照这个代码去改写

1. 相关配置

python==3.7

Windows-pycharm

zed api 具体配置见 (zed api 配置步骤)

由于我电脑之前python版本为3.7,yolov8要求python最低为3.8,所以本次实验直接在虚拟环境里进行,未配置gpu,可能看着卡卡的,有需要的可以配置一下,原理是一样的

2. 版本一

2.1 相关代码

主代码 zed-yolo.py,具体放置在yolov8主目录下,盒子形式展现,可实现测距+跟踪

python 复制代码
#!/usr/bin/env python3

import sys
import numpy as np

import argparse
import torch
import cv2
import pyzed.sl as sl
from ultralytics import YOLO

from threading import Lock, Thread
from time import sleep

import ogl_viewer.viewer as gl
import cv_viewer.tracking_viewer as cv_viewer

lock = Lock()
run_signal = False
exit_signal = False


def xywh2abcd(xywh, im_shape):
    output = np.zeros((4, 2))

    # Center / Width / Height -> BBox corners coordinates
    x_min = (xywh[0] - 0.5*xywh[2]) #* im_shape[1]
    x_max = (xywh[0] + 0.5*xywh[2]) #* im_shape[1]
    y_min = (xywh[1] - 0.5*xywh[3]) #* im_shape[0]
    y_max = (xywh[1] + 0.5*xywh[3]) #* im_shape[0]

    # A ------ B
    # | Object |
    # D ------ C

    output[0][0] = x_min
    output[0][1] = y_min

    output[1][0] = x_max
    output[1][1] = y_min

    output[2][0] = x_max
    output[2][1] = y_max

    output[3][0] = x_min
    output[3][1] = y_max
    return output

def detections_to_custom_box(detections, im0):
    output = []
    for i, det in enumerate(detections):
        xywh = det.xywh[0]

        # Creating ingestable objects for the ZED SDK
        obj = sl.CustomBoxObjectData()
        obj.bounding_box_2d = xywh2abcd(xywh, im0.shape)
        obj.label = det.cls
        obj.probability = det.conf
        obj.is_grounded = False
        output.append(obj)
    return output


def torch_thread(weights, img_size, conf_thres=0.2, iou_thres=0.45):
    global image_net, exit_signal, run_signal, detections

    print("Intializing Network...")

    model = YOLO(weights)

    while not exit_signal:
        if run_signal:
            lock.acquire()

            img = cv2.cvtColor(image_net, cv2.COLOR_BGRA2RGB)
            # https://docs.ultralytics.com/modes/predict/#video-suffixes
            det = model.predict(img, save=False, imgsz=img_size, conf=conf_thres, iou=iou_thres)[0].cpu().numpy().boxes

            # ZED CustomBox format (with inverse letterboxing tf applied)
            detections = detections_to_custom_box(det, image_net)
            lock.release()
            run_signal = False
        sleep(0.01)


def main():
    global image_net, exit_signal, run_signal, detections

    capture_thread = Thread(target=torch_thread, kwargs={'weights': opt.weights, 'img_size': opt.img_size, "conf_thres": opt.conf_thres})
    capture_thread.start()

    print("Initializing Camera...")

    zed = sl.Camera()

    input_type = sl.InputType()
    if opt.svo is not None:
        input_type.set_from_svo_file(opt.svo)

    # Create a InitParameters object and set configuration parameters
    init_params = sl.InitParameters(input_t=input_type, svo_real_time_mode=True)
    init_params.coordinate_units = sl.UNIT.METER
    init_params.depth_mode = sl.DEPTH_MODE.ULTRA  # QUALITY
    init_params.coordinate_system = sl.COORDINATE_SYSTEM.RIGHT_HANDED_Y_UP
    init_params.depth_maximum_distance = 50

    runtime_params = sl.RuntimeParameters()
    status = zed.open(init_params)

    if status != sl.ERROR_CODE.SUCCESS:
        print(repr(status))
        exit()

    image_left_tmp = sl.Mat()

    print("Initialized Camera")

    positional_tracking_parameters = sl.PositionalTrackingParameters()
    # If the camera is static, uncomment the following line to have better performances and boxes sticked to the ground.
    # positional_tracking_parameters.set_as_static = True
    zed.enable_positional_tracking(positional_tracking_parameters)

    obj_param = sl.ObjectDetectionParameters()
#    obj_param.detection_model = sl.OBJECT_DETECTION_MODEL.CUSTOM_BOX_OBJECTS
    obj_param.enable_tracking = True
    zed.enable_object_detection(obj_param)

    objects = sl.Objects()
    obj_runtime_param = sl.ObjectDetectionRuntimeParameters()

    # Display
    camera_infos = zed.get_camera_information()
    camera_res = camera_infos.camera_resolution
    # Create OpenGL viewer
    viewer = gl.GLViewer()
    point_cloud_res = sl.Resolution(min(camera_res.width, 720), min(camera_res.height, 404))
    point_cloud_render = sl.Mat()
    viewer.init(camera_infos.camera_model, point_cloud_res, obj_param.enable_tracking)
    point_cloud = sl.Mat(point_cloud_res.width, point_cloud_res.height, sl.MAT_TYPE.F32_C4, sl.MEM.CPU)
    image_left = sl.Mat()
    # Utilities for 2D display
    display_resolution = sl.Resolution(min(camera_res.width, 1280), min(camera_res.height, 720))
    image_scale = [display_resolution.width / camera_res.width, display_resolution.height / camera_res.height]
    image_left_ocv = np.full((display_resolution.height, display_resolution.width, 4), [245, 239, 239, 255], np.uint8)

    # # Utilities for tracks view
    # camera_config = camera_infos.camera_configuration
    # tracks_resolution = sl.Resolution(400, display_resolution.height)
    # track_view_generator = cv_viewer.TrackingViewer(tracks_resolution, camera_config.fps, init_params.depth_maximum_distance)
    # track_view_generator.set_camera_calibration(camera_config.calibration_parameters)
    # image_track_ocv = np.zeros((tracks_resolution.height, tracks_resolution.width, 4), np.uint8)
    # Camera pose
    cam_w_pose = sl.Pose()

    while viewer.is_available() and not exit_signal:
        if zed.grab(runtime_params) == sl.ERROR_CODE.SUCCESS:
            # -- Get the image
            lock.acquire()
            zed.retrieve_image(image_left_tmp, sl.VIEW.LEFT)
            image_net = image_left_tmp.get_data()
            lock.release()
            run_signal = True

            # -- Detection running on the other thread
            while run_signal:
                sleep(0.001)

            # Wait for detections
            lock.acquire()
            # -- Ingest detections
            zed.ingest_custom_box_objects(detections)
            lock.release()
            zed.retrieve_objects(objects, obj_runtime_param)

            # -- Display
            # Retrieve display data
            zed.retrieve_measure(point_cloud, sl.MEASURE.XYZRGBA, sl.MEM.CPU, point_cloud_res)
            point_cloud.copy_to(point_cloud_render)
            zed.retrieve_image(image_left, sl.VIEW.LEFT, sl.MEM.CPU, display_resolution)
            zed.get_position(cam_w_pose, sl.REFERENCE_FRAME.WORLD)

            # 3D rendering
            viewer.updateData(point_cloud_render, objects)
            # 2D rendering
            np.copyto(image_left_ocv, image_left.get_data())
            cv_viewer.render_2D(image_left_ocv, image_scale, objects, obj_param.enable_tracking)
            global_image = image_left_ocv
            # global_image = cv2.hconcat([image_left_ocv, image_track_ocv])
            # # Tracking view
            # track_view_generator.generate_view(objects, cam_w_pose, image_track_ocv, objects.is_tracked)

            cv2.imshow("ZED | 2D View and Birds View", global_image)
            key = cv2.waitKey(10)
            if key == 27:
                exit_signal = True
        else:
            exit_signal = True

    viewer.exit()
    exit_signal = True
    zed.close()


if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('--weights', type=str, default='yolov8n.pt', help='model.pt path(s)')
    parser.add_argument('--svo', type=str, default=None, help='optional svo file')
    parser.add_argument('--img_size', type=int, default=416, help='inference size (pixels)')
    parser.add_argument('--conf_thres', type=float, default=0.4, help='object confidence threshold')
    opt = parser.parse_args()

    with torch.no_grad():
        main()

2.2 实验结果

测距图(感觉挺精准的)

视频展示:

Zed相机+YOLOv8目标检测跟踪

3. 版本二

3.1 相关代码

主代码 zed.py,具体放置在yolov8主目录下,可实现测距+跟踪+分割

python 复制代码
#!/usr/bin/env python3
import math
import sys
import numpy as np
from PIL import Image
import argparse
import torch
import cv2
import pyzed.sl as sl
from ultralytics.utils.plotting import Annotator, colors, save_one_box
from ultralytics import YOLO
from threading import Lock, Thread
from time import sleep

import ogl_viewer.viewer as gl
import cv_viewer.tracking_viewer as cv_viewer

zed = sl.Camera()

# Create a InitParameters object and set configuration parameters
init_params = sl.InitParameters()
init_params.camera_resolution = sl.RESOLUTION.HD720
init_params.coordinate_units = sl.UNIT.METER
init_params.depth_mode = sl.DEPTH_MODE.ULTRA  # QUALITY
init_params.coordinate_system = sl.COORDINATE_SYSTEM.RIGHT_HANDED_Y_UP
init_params.depth_maximum_distance = 20  # 设置最远距离

runtime_params = sl.RuntimeParameters()
status = zed.open(init_params)

if status != sl.ERROR_CODE.SUCCESS:
    print(repr(status))
    exit()

image_left_tmp = sl.Mat()
print("Initialized Camera")
positional_tracking_parameters = sl.PositionalTrackingParameters()
zed.enable_positional_tracking(positional_tracking_parameters)

obj_param = sl.ObjectDetectionParameters()
obj_param.detection_model = sl.DETECTION_MODEL.CUSTOM_BOX_OBJECTS
obj_param.enable_tracking = True
zed.enable_object_detection(obj_param)
objects = sl.Objects()
obj_runtime_param = sl.ObjectDetectionRuntimeParameters()

point_cloud_render = sl.Mat()
point_cloud = sl.Mat()
image_left = sl.Mat()
depth = sl.Mat()
# Utilities for 2D display
if __name__ == '__main__':
	model = YOLO("./yolov8n.pt")
    while True:
        if zed.grab(runtime_params) == sl.ERROR_CODE.SUCCESS:
            # -- Get the image
            zed.retrieve_image(image_left_tmp, sl.VIEW.LEFT)
            image_net = image_left_tmp.get_data()
            zed.retrieve_measure(depth, sl.MEASURE.DEPTH)
            zed.retrieve_measure(point_cloud, sl.MEASURE.XYZRGBA)
            img = cv2.cvtColor(image_net, cv2.COLOR_BGRA2BGR)

            result = model.predict(img, conf=0.5)
            annotated_frame = result[0].plot()
            boxes = result[0].boxes.xywh

            for i, box in enumerate(boxes):
                x_center, y_center, width, height = box.tolist()
                point_cloud_value = point_cloud.get_value(x_center, y_center)[1]
                point_cloud_value = point_cloud_value * -1000.00
                if point_cloud_value[2] > 0.00:
                    try:
                        point_cloud_value[0] = round(point_cloud_value[0])
                        point_cloud_value[1] = round(point_cloud_value[1])
                        point_cloud_value[2] = round(point_cloud_value[2])

                        distance = math.sqrt(
                            point_cloud_value[0] * point_cloud_value[0] + point_cloud_value[1] *
                            point_cloud_value[1] +
                            point_cloud_value[2] * point_cloud_value[2])
                        print(distance)

                        dis = []
                        dis.append(distance)
                        text = "dis:%0.2fm" % distance
                        cv2.putText(annotated_frame, text, (int(x_center), int(y_center)),
                                    cv2.FONT_ITALIC, 1.0, (0, 0, 255), 2)
                    except:
                        pass
                cv2.imshow('00', annotated_frame)
                key = cv2.waitKey(1)
                if key == 'q':
                    break

            zed.retrieve_objects(objects, obj_runtime_param)
            zed.retrieve_image(image_left, sl.VIEW.LEFT)
    zed.close()

3.2 实验结果

可实现测距、跟踪和分割功能,这个代码没有加多线程,速度够用懒得写了,对速率要求高的可以自己写一下,实现不同功能仅需修改以下代码,具体见 此篇文章

python 复制代码
 model = YOLO("./yolov8n.pt")
 img = cv2.cvtColor(image_net, cv2.COLOR_BGRA2BGR)
 result = model.predict(img, conf=0.5)

测距功能

跟踪功能

分割功能

视频展示

相关推荐
计算机编程小咖36 分钟前
《基于大数据的农产品交易数据分析与可视化系统》选题不当,毕业答辩可能直接挂科
java·大数据·hadoop·python·数据挖掘·数据分析·spark
zhangfeng11332 小时前
以下是基于图论的归一化切割(Normalized Cut)图像分割工具的完整实现,结合Tkinter界面设计及Python代码示
开发语言·python·图论
flashlight_hi2 小时前
LeetCode 分类刷题:2529. 正整数和负整数的最大计数
python·算法·leetcode
Ashlee_code3 小时前
香港券商櫃台系統跨境金融研究
java·python·科技·金融·架构·系统架构·区块链
Jia-Hui Su3 小时前
GDSFactory环境配置(PyCharm+Git+KLayout)
git·python·pycharm
学习3人组4 小时前
手写数字识别代码
人工智能·python
古译汉书5 小时前
蓝桥杯算法之基础知识(2)——Python赛道
数据结构·python·算法·蓝桥杯
少陵野小Tommy5 小时前
Python能用古诗词数据库做什么7:根据标题、诗句查找诗歌
开发语言·数据库·python
IT·陈寒5 小时前
新手小白零基础搭建MCP教程
python·ai·tools·mcp
倔强青铜三5 小时前
苦练Python第42天:Python类(Class)初探,面向对象编程入门
人工智能·python·面试