Hive窗口函数笔试题(面试题)

Hive笔试题实战

短视频

题目一:计算各个视频的平均未完播率

有用户-视频互动表tb_user_video_log:

|--------|---------|--------------|---------------------|---------------------|---------------|-------------|----------------|----------------|
| id | uid | video_id | start_time | end_time | if_follow | if_like | if_retweet | comment_id |
| 1 | 101 | 2001 | 2021-10-01 10:00:00 | 2021-10-01 10:00:30 | 0 | 1 | 1 | NULL |
| 2 | 102 | 2001 | 2021-10-01 10:00:00 | 2021-10-01 10:00:24 | 0 | 0 | 1 | NULL |
| 3 | 103 | 2001 | 2021-10-01 11:00:00 | 2021-10-01 11:00:34 | 0 | 1 | 0 | 1732526 |
| 4 | 101 | 2002 | 2021-09-01 10:00:00 | 2021-9-01 10:00:42 | 1 | 0 | 1 | NULL |
| 5 | 102 | 2002 | 2021-10-01 11:00:00 | 2021-10-01 10:00:30 | 1 | 0 | 1 | NULL |

uid-用户ID,video_id-视频ID,start_time-开始观看时间,end_time-结束观看时间,if_follow-是否关注,if_like-是否点赞,if_retweet-是否转发,comment_id-评论ID。

有短视频信息表tb_video_info:

|--------|--------------|------------|---------|--------------|---------------------|
| id | video_id | author | tag | duration | release_time |
| 1 | 2001 | 901 | 影视 | 30 | 2021-01-01 07:00:00 |
| 2 | 2002 | 901 | 美食 | 60 | 2021-01-01 07:00:00 |
| 3 | 2003 | 902 | 旅游 | 90 | 2021-01-01 07:00:00 |

video_id-视频ID,author-创作者ID,tag-类别标签,duration-视频时长(秒),release_time-发布时间。

问题:计算2021年里有播放记录的每个视频的完播率(结果保留三位小数),并按完播率降序排序。输出结果如下:

|--------------|------------------------|
| video_id | avg_comp_play_rate |
| 2001 | 0.667 |
| 2002 | 0.000 |

注:视频完播率是指完成播放次数占总播放次数的比例。简单起见,结束观看时间与开始播放时间的差≥视频时长时,视为完成播放。

-- 建立用户-视频互动表

drop table if exists tb_user_video_log;

create table tb_user_video_log (

id int comment '自增ID',

uid int comment '用户ID',

video_id int comment '视频ID',

start_time string COMMENT '开始观看时间',

end_time string COMMENT '结束观看时间',

if_follow int comment '是否关注',

if_like int comment '是否点赞',

if_retweet int comment '是否转发',

comment_id int comment '评论ID'

) comment '用户-视频互动表'

row format delimited fields terminated by ',';

-- 建立短视频信息表

drop table if exists tb_video_info;

create table tb_video_info (

id int comment '自增ID',

video_id int comment '视频ID',

author int comment '创作者ID',

tag string comment '类别标签',

duration int comment '视频时长(秒数)',

release_time string comment '发布时间'

) comment '短视频信息表'

row format delimited fields terminated by ',';

-- 插入数据

insert into tb_user_video_log

values (1, 101, 2001, '2021-10-01 10:00:00', '2021-10-01 10:00:30', 0, 1, 1, null),

(2, 102, 2001, '2021-10-01 10:00:00', '2021-10-01 10:00:24', 0, 0, 1, null),

(3, 103, 2001, '2021-10-01 11:00:00', '2021-10-01 11:00:34', 0, 1, 0, 1732526),

(4, 101, 2002, '2021-09-01 10:00:00', '2021-09-01 10:00:42', 1, 0, 1, null),

(5, 102, 2002, '2021-10-01 11:00:00', '2021-10-01 11:00:30', 1, 0, 1, null);

insert into tb_video_info

values (1, 2001, 901, '影视', 30, '2021-01-01 7:00:00'),

(2, 2002, 901, '美食', 60, '2021-01-01 7:00:00'),

(3, 2003, 902, '旅游', 90, '2021-01-01 7:00:00');

题目二:平均播放进度大于60%的视频类别

有用户-视频互动表tb_user_video_log:

|--------|---------|--------------|---------------------|---------------------|---------------|-------------|----------------|----------------|
| id | uid | video_id | start_time | end_time | if_follow | if_like | if_retweet | comment_id |
| 1 | 101 | 2001 | 2021-10-01 10:00:00 | 2021-10-01 10:00:30 | 0 | 1 | 1 | NULL |
| 2 | 102 | 2001 | 2021-10-01 10:00:00 | 2021-10-01 10:00:21 | 0 | 0 | 1 | NULL |
| 3 | 103 | 2001 | 2021-10-01 11:00:50 | 2021-10-01 11:01:20 | 0 | 1 | 0 | 1732526 |
| 4 | 102 | 2002 | 2021-10-01 11:00:00 | 2021-10-01 11:00:30 | 1 | 0 | 1 | NULL |
| 5 | 103 | 2002 | 2021-10-01 10:59:05 | 2021-10-01 11:00:05 | 1 | 0 | 1 | NULL |

uid-用户ID,video_id-视频ID,start_time-开始观看时间,end_time-结束观看时间,if_follow-是否关注,if_like-是否点赞,if_retweet-是否转发,comment_id-评论ID。

有短视频信息表tb_video_info:

|--------|--------------|------------|---------|--------------|---------------------|
| id | video_id | author | tag | duration | release_time |
| 1 | 2001 | 901 | 影视 | 30 | 2021-01-01 07:00:00 |
| 2 | 2002 | 901 | 美食 | 60 | 2021-01-01 07:00:00 |
| 3 | 2003 | 902 | 旅游 | 90 | 2021-01-01 07:00:00 |

video_id-视频ID,author-创作者ID,tag-类别标签,duration-视频时长(秒),release_time-发布时间。

问题:计算各类视频的平均播放进度,将进度大于60%的类别输出(结果保留两位小数,并按播放进度倒序排序)。示例数据的输出结果如下:

|---------|-----------------------|
| tag | avg_play_progress |
| 影视 | 90.00% |
| 美食 | 75.00% |

注:播放进度=播放时长÷视频时长*100%,当播放时长大于视频时长时,播放进度均记为100%。

例如:影视类视频2001被用户101、102、103看过,播放进度分别为:30秒(100%)、21秒(70%)、30秒(100%),平均播放进度为(100%+70%+100%)/3=90.00%(保留两位小数)。

-- 建立用户-视频互动表

drop table if exists tb_user_video_log;

create table tb_user_video_log (

id int comment '自增ID',

uid int comment '用户ID',

video_id int comment '视频ID',

start_time string COMMENT '开始观看时间',

end_time string COMMENT '结束观看时间',

if_follow int comment '是否关注',

if_like int comment '是否点赞',

if_retweet int comment '是否转发',

comment_id int comment '评论ID'

) comment '用户-视频互动表'

row format delimited fields terminated by ',';

-- 建立短视频信息表

drop table if exists tb_video_info;

create table tb_video_info (

id int comment '自增ID',

video_id int comment '视频ID',

author int comment '创作者ID',

tag string comment '类别标签',

duration int comment '视频时长(秒数)',

release_time string comment '发布时间'

) comment '短视频信息表'

row format delimited fields terminated by ',';

-- 插入数据

insert into tb_user_video_log

values (1, 101, 2001, '2021-10-01 10:00:00', '2021-10-01 10:00:30', 0, 1, 1, null),

(2, 102, 2001, '2021-10-01 10:00:00', '2021-10-01 10:00:21', 0, 0, 1, null),

(3, 103, 2001, '2021-10-01 11:00:50', '2021-10-01 11:01:20', 0, 1, 0, 1732526),

(4, 102, 2002, '2021-10-01 11:00:00', '2021-10-01 11:00:30', 1, 0, 1, null),

(5, 103, 2002, '2021-10-01 10:59:05', '2021-10-01 11:00:05', 1, 0, 1, null);

insert into tb_video_info

values (1, 2001, 901, '影视', 30, '2021-01-01 7:00:00'),

(2, 2002, 901, '美食', 60, '2021-01-01 7:00:00'),

(3, 2003, 902, '旅游', 90, '2021-01-01 7:00:00');

题目三:每类视频近一个月的转发量/率

有用户-视频互动表tb_user_video_log:

|--------|---------|--------------|---------------------|---------------------|---------------|-------------|----------------|----------------|
| id | uid | video_id | start_time | end_time | if_follow | if_like | if_retweet | comment_id |
| 1 | 101 | 2001 | 2021-10-01 10:00:00 | 2021-10-01 10:00:20 | 0 | 1 | 1 | NULL |
| 2 | 102 | 2001 | 2021-10-01 10:00:00 | 2021-10-01 10:00:15 | 0 | 0 | 1 | NULL |
| 3 | 103 | 2001 | 2021-10-01 11:00:50 | 2021-10-01 11:01:15 | 0 | 1 | 0 | 1732526 |
| 4 | 102 | 2002 | 2021-09-10 11:00:00 | 2021-09-10 11:00:30 | 1 | 0 | 1 | NULL |
| 5 | 103 | 2002 | 2021-10-01 10:59:05 | 2021-10-01 11:00:05 | 1 | 0 | 0 | NULL |

uid-用户ID,video_id-视频ID,start_time-开始观看时间,end_time-结束观看时间,if_follow-是否关注,if_like-是否点赞,if_retweet-是否转发,comment_id-评论ID。

有短视频信息表tb_video_info:

|--------|--------------|------------|---------|--------------|---------------------|
| id | video_id | author | tag | duration | release_time |
| 1 | 2001 | 901 | 影视 | 30 | 2021-01-01 07:00:00 |
| 2 | 2002 | 901 | 美食 | 60 | 2021-01-01 07:00:00 |
| 3 | 2003 | 902 | 旅游 | 90 | 2021-01-01 07:00:00 |

video_id-视频ID,author-创作者ID,tag-类别标签,duration-视频时长(秒),release_time-发布时间。

问题:统计在有用户互动的最近一个月(按包含当天在内的近30天算,比如10月31日的近30天为10.2~10.31之间的数据)中,每类视频的转发量和转发率(保留3位小数)。输出结果如下:

|---------|-----------------|------------------|
| tag | retweet_cut | retweet_rate |
| 影视 | 2 | 0.667 |
| 美食 | 1 | 0.500 |

注:转发率=转发量÷播放量。结果按转发率降序排序。

解释:由表tb_user_video_log的数据可得,数据转储当天为2021年10月1日。近30天内,影视类视频2001共有3次播放记录,被转发2次,转发率为0.667;美食类视频2002共有2次播放记录,1次被转发,转发率为0.500。

-- 建立用户-视频互动表

drop table if exists tb_user_video_log;

create table tb_user_video_log (

id int comment '自增ID',

uid int comment '用户ID',

video_id int comment '视频ID',

start_time string COMMENT '开始观看时间',

end_time string COMMENT '结束观看时间',

if_follow int comment '是否关注',

if_like int comment '是否点赞',

if_retweet int comment '是否转发',

comment_id int comment '评论ID'

) comment '用户-视频互动表'

row format delimited fields terminated by ',';

-- 建立短视频信息表

drop table if exists tb_video_info;

create table tb_video_info (

id int comment '自增ID',

video_id int comment '视频ID',

author int comment '创作者ID',

tag string comment '类别标签',

duration int comment '视频时长(秒数)',

release_time string comment '发布时间'

) comment '短视频信息表'

row format delimited fields terminated by ',';

-- 插入数据

insert into tb_user_video_log

values (1, 101, 2001, '2021-10-01 10:00:00', '2021-10-01 10:00:20', 0, 1, 1, null),

(2, 102, 2001, '2021-10-01 10:00:00', '2021-10-01 10:00:15', 0, 0, 1, null),

(3, 103, 2001, '2021-10-01 11:00:50', '2021-10-01 11:01:15', 0, 1, 0, 1732526),

(4, 102, 2002, '2021-09-10 11:00:00', '2021-09-10 11:00:30', 1, 0, 1, null),

(5, 103, 2002, '2021-10-01 10:59:05', '2021-10-01 11:00:05', 1, 0, 0, null);

insert into tb_video_info

values (1, 2001, 901, '影视', 30, '2021-01-01 7:00:00'),

(2, 2002, 901, '美食', 60, '2021-01-01 7:00:00'),

(3, 2003, 902, '旅游', 90, '2021-01-01 7:00:00');

题目四:每个创作者每月的涨粉率及截止当前的总粉丝量

有用户-视频互动表tb_user_video_log:

|--------|---------|--------------|---------------------|---------------------|---------------|-------------|----------------|----------------|
| id | uid | video_id | start_time | end_time | if_follow | if_like | if_retweet | comment_id |
| 1 | 101 | 2001 | 2021-09-01 10:00:00 | 2021-09-01 10:00:20 | 0 | 1 | 1 | NULL |
| 2 | 105 | 2002 | 2021-09-10 11:00:00 | 2021-09-10 11:00:30 | 1 | 0 | 1 | NULL |
| 3 | 101 | 2001 | 2021-10-01 10:00:00 | 2021-10-01 10:00:20 | 1 | 1 | 1 | NULL |
| 4 | 102 | 2001 | 2021-10-01 10:00:00 | 2021-10-01 10:00:15 | 0 | 0 | 1 | NULL |
| 5 | 103 | 2001 | 2021-10-01 11:00:50 | 2021-10-01 11:01:15 | 1 | 1 | 0 | 1732526 |
| 6 | 106 | 2002 | 2021-10-01 10:59:05 | 021-10-01 11:00:05 | 2 | 0 | 0 | NULL |

uid-用户ID,video_id-视频ID,start_time-开始观看时间,end_time-结束观看时间,if_follow-是否关注,if_like-是否点赞,if_retweet-是否转发,comment_id-评论ID。

有短视频信息表tb_video_info:

|--------|--------------|------------|---------|--------------|---------------------|
| id | video_id | author | tag | duration | release_time |
| 1 | 2001 | 901 | 影视 | 30 | 2021-01-01 07:00:00 |
| 2 | 2002 | 901 | 美食 | 60 | 2021-01-01 07:00:00 |
| 3 | 2003 | 902 | 旅游 | 90 | 2021-01-01 07:00:00 |
| 4 | 2004 | 902 | 美女 | 90 | 2020-01-01 08:00:00 |

video_id-视频ID,author-创作者ID,tag-类别标签,duration-视频时长(秒),release_time-发布时间。

问题:计算2021年里每个创作者每月的涨粉率及截止当月的总粉丝量。输出结果如下:

|------------|-----------|----------------------|----------------|
| author | month | fans_growth_rate | total_fans |
| 901 | 2021-09 | 0.500 | 1 |
| 901 | 2021-10 | 0.250 | 2 |

注:涨粉率=(加粉量 - 掉粉量) / 播放量。结果按创作者ID、总粉丝量升序排序。if_follow-是否关注,为1表示用户观看视频中关注了视频创作者,为0表示此次互动前后关注状态未发生变化,为2表示本次观看过程中取消了关注。

解释:示例数据中表tb_user_video_log里只有视频2001和2002的播放记录,都来自创作者901,播放时间在2021年9月和10月;其中9月里加粉量为1,掉粉量为0,播放量为2,因此涨粉率为0.500(保留3位小数);其中10月里加粉量为2,掉份量为1,播放量为4,因此涨粉率为0.250,截止当前总粉丝数为2。

-- 建立用户-视频互动表

drop table if exists tb_user_video_log;

create table tb_user_video_log (

id int comment '自增ID',

uid int comment '用户ID',

video_id int comment '视频ID',

start_time string COMMENT '开始观看时间',

end_time string COMMENT '结束观看时间',

if_follow int comment '是否关注',

if_like int comment '是否点赞',

if_retweet int comment '是否转发',

comment_id int comment '评论ID'

) comment '用户-视频互动表'

row format delimited fields terminated by ',';

-- 建立短视频信息表

drop table if exists tb_video_info;

create table tb_video_info (

id int comment '自增ID',

video_id int comment '视频ID',

author int comment '创作者ID',

tag string comment '类别标签',

duration int comment '视频时长(秒数)',

release_time string comment '发布时间'

) comment '短视频信息表'

row format delimited fields terminated by ',';

-- 插入数据

insert into tb_user_video_log

values (1, 101, 2001, '2021-09-01 10:00:00', '2021-09-01 10:00:20', 0, 1, 1, null),

(2, 105, 2002, '2021-09-10 11:00:00', '2021-09-10 11:00:30', 1, 0, 1, null),

(3, 101, 2001, '2021-10-01 10:00:00', '2021-10-01 10:00:20', 1, 1, 1, null),

(4, 102, 2001, '2021-10-01 10:00:00', '2021-10-01 10:00:15', 0, 0, 1, null),

(5, 103, 2001, '2021-10-01 11:00:50', '2021-10-01 11:01:15', 1, 1, 0, 1732526),

(6, 106, 2002, '2021-10-01 10:59:05', '2021-10-01 11:00:05', 2, 0, 0, null);

insert into tb_video_info

VALUES (1, 2001, 901, '影视', 30, '2021-01-01 7:00:00'),

(2, 2002, 901, '影视', 60, '2021-01-01 7:00:00'),

(3, 2003, 902, '旅游', 90, '2020-01-01 7:00:00'),

(4, 2004, 902, '美女', 90, '2020-01-01 8:00:00');

题目五:国庆期间每类视频点赞量和转发量

有用户-视频互动表tb_user_video_log:

|--------|---------|--------------|---------------------|---------------------|---------------|-------------|----------------|----------------|
| id | uid | video_id | start_time | end_time | if_follow | if_like | if_retweet | comment_id |
| 1 | 101 | 2001 | 2021-09-24 10:00:00 | 2021-09-24 10:00:20 | 1 | 1 | 0 | NULL |
| 2 | 105 | 2002 | 2021-09-25 11:00:00 | 2021-09-25 11:00:30 | 0 | 0 | 1 | NULL |
| 3 | 102 | 2002 | 2021-09-25 11:00:00 | 2021-09-25 11:00:30 | 1 | 1 | 1 | NULL |
| 4 | 101 | 2002 | 2021-09-26 11:00:00 | 2021-09-26 11:00:30 | 1 | 0 | 1 | NULL |
| 5 | 101 | 2002 | 2021-09-27 11:00:00 | 2021-09-27 11:00:30 | 1 | 1 | 0 | NULL |
| 6 | 102 | 2002 | 2021-09-28 11:00:00 | 2021-09-28 11:00:30 | 1 | 0 | 1 | NULL |
| 7 | 103 | 2002 | 2021-09-29 11:00:00 | 2021-10-02 11:00:30 | 1 | 0 | 1 | NULL |
| 8 | 102 | 2002 | 2021-09-30 11:00:00 | 2021-09-30 11:00:30 | 1 | 1 | 1 | NULL |
| 9 | 101 | 2001 | 2021-10-01 10:00:00 | 2021-10-01 10:00:20 | 1 | 1 | 0 | NULL |
| 10 | 102 | 2001 | 2021-10-01 10:00:00 | 2021-10-01 10:00:15 | 0 | 0 | 1 | NULL |
| 11 | 103 | 2001 | 2021-10-01 11:00:50 | 2021-10-01 11:01:15 | 1 | 1 | 0 | 1732526 |
| 12 | 106 | 2002 | 2021-10-02 10:59:05 | 2021-10-02 11:00:05 | 2 | 0 | 1 | NULL |
| 13 | 107 | 2002 | 2021-10-02 10:59:05 | 2021-10-02 11:00:05 | 1 | 0 | 1 | NULL |
| 14 | 108 | 2002 | 2021-10-02 10:59:05 | 2021-10-02 11:00:05 | 1 | 1 | 1 | NULL |
| 15 | 109 | 2002 | 2021-10-03 10:59:05 | 2021-10-03 11:00:05 | 0 | 1 | 0 | NULL |

uid-用户ID,video_id-视频ID,start_time-开始观看时间,end_time-结束观看时间,if_follow-是否关注,if_like-是否点赞,if_retweet-是否转发,comment_id-评论ID。

有短视频信息表tb_video_info:

|--------|--------------|------------|---------|--------------|---------------------|
| id | video_id | author | tag | duration | release_time |
| 1 | 2001 | 901 | 影视 | 30 | 2021-01-01 07:00:00 |
| 2 | 2002 | 901 | 美食 | 60 | 2021-01-01 07:00:00 |
| 3 | 2003 | 902 | 旅游 | 90 | 2021-01-01 07:00:00 |
| 4 | 2004 | 902 | 美女 | 90 | 2020-01-01 08:00:00 |

video_id-视频ID,author-创作者ID,tag-类别标签,duration-视频时长(秒),release_time-发布时间。

问题:统计2021年国庆头3天每类视频每天的近一周总点赞量和一周内最大单天转发量,结果按视频类别降序、日期升序排序。假设数据库中数据足够多,至少每个类别下国庆头3天及之前一周的每天都有播放记录。结果如下:

|---------|------------|---------------------|------------------------|
| tag | dt | sum_like_cnt_7d | max_retweet_cnt_7d |
| 旅游 | 2021-10-01 | 5 | 2 |
| 旅游 | 2021-10-02 | 5 | 3 |
| 旅游 | 2021-10-03 | 6 | 3 |

解释:由表tb_user_video_log里的数据可得只有旅游类视频的播放,2021年9月25到10月3日每天的点赞量和转发量如下:

|---------|------------|--------------|-----------------|
| tag | dt | like_cnt | retweet_cnt |
| 旅游 | 2021-09-25 | 1 | 2 |
| 旅游 | 2021-09-26 | 0 | 1 |
| 旅游 | 2021-09-27 | 1 | 0 |
| 旅游 | 2021-09-28 | 0 | 1 |
| 旅游 | 2021-09-29 | 0 | 1 |
| 旅游 | 2021-09-30 | 1 | 1 |
| 旅游 | 2021-10-01 | 2 | 1 |
| 旅游 | 2021-10-02 | 1 | 3 |
| 旅游 | 2021-10-03 | 1 | 0 |

因此国庆头3天(10.01~10.03)里10.01的近7天(9.25~10.01)总点赞量为5次,单天最大转发量为2次(9月25那天最大);同理可得10.02和10.03的两个指标。

-- 建立用户-视频互动表

drop table if exists tb_user_video_log;

create table tb_user_video_log (

id int comment '自增ID',

uid int comment '用户ID',

video_id int comment '视频ID',

start_time string COMMENT '开始观看时间',

end_time string COMMENT '结束观看时间',

if_follow int comment '是否关注',

if_like int comment '是否点赞',

if_retweet int comment '是否转发',

comment_id int comment '评论ID'

) comment '用户-视频互动表'

row format delimited fields terminated by ',';

-- 建立短视频信息表

drop table if exists tb_video_info;

create table tb_video_info (

id int comment '自增ID',

video_id int comment '视频ID',

author int comment '创作者ID',

tag string comment '类别标签',

duration int comment '视频时长(秒数)',

release_time string comment '发布时间'

) comment '短视频信息表'

row format delimited fields terminated by ',';

-- 插入数据

insert into tb_user_video_log

values (1, 101, 2001, '2021-09-24 10:00:00', '2021-09-24 10:00:20', 1, 1, 0, null),

(2, 105, 2002, '2021-09-25 11:00:00', '2021-09-25 11:00:30', 0, 0, 1, null),

(3, 102, 2002, '2021-09-25 11:00:00', '2021-09-25 11:00:30', 1, 1, 1, null),

(4, 101, 2002, '2021-09-26 11:00:00', '2021-09-26 11:00:30', 1, 0, 1, null),

(5, 101, 2002, '2021-09-27 11:00:00', '2021-09-27 11:00:30', 1, 1, 0, null),

(6, 102, 2002, '2021-09-28 11:00:00', '2021-09-28 11:00:30', 1, 0, 1, null),

(7, 103, 2002, '2021-09-29 11:00:00', '2021-09-29 11:00:30', 1, 0, 1, null),

(8, 102, 2002, '2021-09-30 11:00:00', '2021-09-30 11:00:30', 1, 1, 1, null),

(9, 101, 2001, '2021-10-01 10:00:00', '2021-10-01 10:00:20', 1, 1, 0, null),

(10, 102, 2001, '2021-10-01 10:00:00', '2021-10-01 10:00:15', 0, 0, 1, null),

(11, 103, 2001, '2021-10-01 11:00:50', '2021-10-01 11:01:15', 1, 1, 0, 1732526),

(12, 106, 2002, '2021-10-02 10:59:05', '2021-10-02 11:00:05', 2, 0, 1, null),

(13, 107, 2002, '2021-10-02 10:59:05', '2021-10-02 11:00:05', 1, 0, 1, null),

(14, 108, 2002, '2021-10-02 10:59:05', '2021-10-02 11:00:05', 1, 1, 1, null),

(15, 109, 2002, '2021-10-03 10:59:05', '2021-10-03 11:00:05', 0, 1, 0, null);

insert into tb_video_info

VALUES (1, 2001, 901, '影视', 30, '2021-01-01 7:00:00'),

(2, 2002, 901, '影视', 60, '2021-01-01 7:00:00'),

(3, 2003, 902, '旅游', 90, '2020-01-01 7:00:00'),

(4, 2004, 902, '美女', 90, '2020-01-01 8:00:00');

题目六:近一个月发布的视频中热度最高的top3视频

有用户-视频互动表tb_user_video_log:

|--------|---------|--------------|---------------------|---------------------|---------------|-------------|----------------|----------------|
| id | uid | video_id | start_time | end_time | if_follow | if_like | if_retweet | comment_id |
| 1 | 101 | 2001 | 2021-09-24 10:00:00 | 2021-09-24 10:00:30 | 1 | 1 | 1 | NULL |
| 2 | 101 | 2001 | 2021-10-01 10:00:00 | 2021-10-01 10:00:31 | 1 | 1 | 0 | NULL |
| 3 | 102 | 2001 | 2021-10-01 10:00:00 | 2021-10-01 10:00:35 | 0 | 0 | 1 | NULL |
| 4 | 103 | 2001 | 2021-10-03 11:00:50 | 2021-10-03 10:00:35 | 1 | 1 | 0 | 1732526 |
| 5 | 106 | 2002 | 2021-10-02 11:00:05 | 2021-10-02 11:01:04 | 2 | 0 | 1 | NULL |
| 6 | 107 | 2002 | 2021-10-02 10:59:05 | 2021-10-02 11:00:06 | 1 | 0 | 0 | NULL |
| 7 | 108 | 2002 | 2021-10-02 10:59:05 | 2021-10-02 11:00:05 | 1 | 1 | 1 | NULL |
| 8 | 109 | 2002 | 2021-10-03 10:59:05 | 2021-10-03 11:00:01 | 0 | 1 | 0 | NULL |
| 9 | 105 | 2002 | 2021-09-25 11:00:00 | 2021-09-25 11:00:30 | 1 | 0 | 1 | NULL |
| 10 | 101 | 2003 | 2021-09-26 11:00:00 | 2021-09-26 11:00:30 | 1 | 0 | 0 | NULL |
| 11 | 101 | 2003 | 2021-09-30 11:00:00 | 2021-09-30 11:00:30 | 1 | 1 | 0 | NULL |

uid-用户ID,video_id-视频ID,start_time-开始观看时间,end_time-结束观看时间,if_follow-是否关注,if_like-是否点赞,if_retweet-是否转发,comment_id-评论ID。

有短视频信息表tb_video_info:

|--------|--------------|------------|---------|--------------|---------------------|
| id | video_id | author | tag | duration | release_time |
| 1 | 2001 | 901 | 影视 | 30 | 2021-09-05 07:00:00 |
| 2 | 2002 | 901 | 美食 | 60 | 2021-09-05 07:00:00 |
| 3 | 2003 | 902 | 旅游 | 90 | 2021-09-05 07:00:00 |
| 4 | 2004 | 902 | 美女 | 90 | 2021-09-05 08:00:00 |

video_id-视频ID,author-创作者ID,tag-类别标签,duration-视频时长(秒),release_time-发布时间。

问题:找出近一个月发布的视频中热度最高的top3视频。结果如下:

|--------------|---------------|
| video_id | hot_index |
| 2001 | 122 |
| 2002 | 56 |
| 2003 | 1 |

注意:

1)热度=(a*视频完播率+b*点赞数+c*评论数+d*转发数)*新鲜度;

2)新鲜度=最近无播放天数+1,最近无播放天数指的是最后一次播放日期到最近日期之间的天数间隔;

3)当前配置的参数a,b,c,d分别为100、5、3、2;

4)最近播放日期以end_time为准,假设为T,则最近一个月按[T-29, T]闭区间统计;

5)结果中热度保留为整数,并按热度降序排序。

解释:假设最近播放日期为2021-10-03,记作当天日期;近一个月(2021-09-04及之后)发布的视频有2001、2002、2003、2004,不过2004暂时还没有播放记录;视频2001完播率1.0(被播放次数4次,完成播放4次),被点赞3次,评论1次,转发2次,最后一次播放日期为2021-10-03,所以最近无播放天数为0,因此热度为:(100*1.0+5*3+3*1+2*2)/(0+1)=122;同理,视频2003完播率0,被点赞数1,评论和转发均为0,最后一次播放日期为2021-09-30,所以最近无播放天数为3,因此热度为:(100*0+5*1+3*0+2*0)/(3+1)=1(1.2保留为整数)。

-- 建立用户-视频互动表

drop table if exists tb_user_video_log;

create table tb_user_video_log (

id int comment '自增ID',

uid int comment '用户ID',

video_id int comment '视频ID',

start_time string COMMENT '开始观看时间',

end_time string COMMENT '结束观看时间',

if_follow int comment '是否关注',

if_like int comment '是否点赞',

if_retweet int comment '是否转发',

comment_id int comment '评论ID'

) comment '用户-视频互动表'

row format delimited fields terminated by ',';

-- 建立短视频信息表

drop table if exists tb_video_info;

create table tb_video_info (

id int comment '自增ID',

video_id int comment '视频ID',

author int comment '创作者ID',

tag string comment '类别标签',

duration int comment '视频时长(秒数)',

release_time string comment '发布时间'

) comment '短视频信息表'

row format delimited fields terminated by ',';

-- 插入数据

insert into tb_user_video_log

values (1, 101, 2001, '2021-09-24 10:00:00', '2021-09-24 10:00:30', 1, 1, 1, null),

(2, 101, 2001, '2021-10-01 10:00:00', '2021-10-01 10:00:31', 1, 1, 0, null),

(3, 102, 2001, '2021-10-01 10:00:00', '2021-10-01 10:00:35', 0, 0, 1, null),

(4, 103, 2001, '2021-10-03 11:00:50', '2021-10-03 11:01:35', 1, 1, 0, 1732526),

(5, 106, 2002, '2021-10-02 10:59:05', '2021-10-02 11:00:04', 2, 0, 1, null),

(6, 107, 2002, '2021-10-02 10:59:05', '2021-10-02 11:00:06', 1, 0, 0, null),

(7, 108, 2002, '2021-10-02 10:59:05', '2021-10-02 11:00:05', 1, 1, 1, null),

(8, 109, 2002, '2021-10-03 10:59:05', '2021-10-03 11:00:01', 0, 1, 0, null),

(9, 105, 2002, '2021-09-25 11:00:00', '2021-09-25 11:00:30', 1, 0, 1, null),

(10, 101, 2003, '2021-09-26 11:00:00', '2021-09-26 11:00:30', 1, 0, 0, null),

(11, 101, 2003, '2021-09-30 11:00:00', '2021-09-30 11:00:30', 1, 1, 0, null);

insert into tb_video_info

VALUES (1, 2001, 901, '旅游', 30, '2021-09-05 7:00:00'),

(2, 2002, 901, '旅游', 60, '2021-09-05 7:00:00'),

(3, 2003, 902, '影视', 90, '2021-09-05 7:00:00'),

(4, 2004, 902, '影视', 90, '2021-09-05 8:00:00');

相关推荐
郭源潮34519 分钟前
Hadoop
大数据·hadoop·分布式
中科岩创26 分钟前
中科岩创桥梁自动化监测解决方案
大数据·网络·物联网
百家方案1 小时前
「下载」智慧产业园区-数字孪生建设解决方案:重构产业全景图,打造虚实结合的园区数字化底座
大数据·人工智能·智慧园区·数智化园区
forestsea1 小时前
【Elasticsearch】分片与副本机制:优化数据存储与查询性能
大数据·elasticsearch·搜索引擎
开着拖拉机回家1 小时前
【Ambari】使用 Knox 进行 LDAP 身份认证
大数据·hadoop·gateway·ambari·ldap·knox
地球资源数据云1 小时前
全国30米分辨率逐年植被覆盖度(FVC)数据集
大数据·运维·服务器·数据库·均值算法
INFINI Labs2 小时前
Elasticsearch filter context 的使用原理
大数据·elasticsearch·jenkins·filter·querycache
Ahern_2 小时前
Oracle 普通表至分区表的分区交换
大数据·数据库·sql·oracle
李昊哲小课2 小时前
deepin 安装 kafka
大数据·分布式·zookeeper·数据分析·kafka
FIN66683 小时前
张剑教授:乳腺癌小红书(2025年版)更新,芦康沙妥珠单抗成功进入TNBC二线推荐,彰显乳腺癌诊疗的“中国力量”
大数据·搜索引擎·健康医疗